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ABSTRACT

In this paper, we present a robust method to efficiently create a glob-
ally consistent and seamless mosaic from aerial images. Firstly,
a globally consistent registration strategy is proposed to align the
aerial images in a common coordinate system, which combines the
affine model with the homographic model effectively. To suppress
the accumulation of perspective distortions induced by a sequential
set of aerial images taken from a wide-range region, we proposed to
initially align each image by an affine model and then perform a ho-
mographic refinement in groups to increase the global consistency.
Secondly, to efficiently conceal the parallax between aligned images
in overlap regions with large depth differences where it is impossi-
ble to recover a highly accurate consistent image registration, a nov-
el optimized seamline detection algorithm in the graph cuts energy
minimization framework is proposed to find optimal seamlines with-
in overlap regions for image mosaicking through rounding visually
obvious foreground objects. Finally, experimental results on sever-
al representive image sets illustrate the superiority of our proposed
approaches.

Index Terms— Image Mosaicking, Seamline Detection, Image
Parallax, Global Consistency

1. INTRODUCTION

Nowadays, satellite and aerial remote sensing are common technique
ways to quickly capture images for territorial monitoring in both civ-
il and military fields, such as natural disaster monitoring and ground
reconnaissance. Due to the range and resolution limitation of imag-
ing sensors, a single image frame is too small to cover a wide-range
ground area. Therefore, the robust image mosaicking is a reason-
able technique to be applied to stitch sequential images to create a
wide-view seamless mosaic image. Although there are many related
studies in the literature in the past decade, the performance consid-
ering both accurate alignment and global consistency still remains to
be improved.

For image seamless mosaicking, accurately aligning images in-
to a common coordinate system is the critical first step which di-
rectly influences the mosaicking quality [1, 2, 3]. Most of image
alignment approaches can be divided into two categories: area-based
approaches [4, 5] and feature-based ones [6]. For aerial image mo-
saicking, feature-based approaches are usually applied to recover the
homographic model between images [7, 8, 9] due to the fact that
the ground scene can be regarded as an approximate plane observed
from the aerial photographic camera. To suppress the accumulation
error from sequential images, many optimization algorithms are pro-
posed for a global alignment. A typical global optimization method
is “Bundle Adjustment” [10, 11], which aims at finding an optimal
solution minimizing the total reprojection error [12]. To provide a
good initial solution for global optimization, Xing et al. [13] pro-
posed to first apply the Extended Kalman Filter [14] onto the lo-

Fig. 1. An illustration of error accumulation due to perspective dis-
tortion from sequential images.

cal area, and then refine all the parameters globally. Some meth-
ods [15, 16] utilized the topological structure information of im-
ages to achieve a global registration. To prevent image suffering
down-scaling effect, Elibol et al. [17] proposed to optimize point
positions in the mosaic frame and alignment model in an alternate
iteration scheme. Although these methods can obtain the transfor-
mation models with minimum reprojection error, the globally con-
sistent mosaic is inaccessible for them when the model is not a strict
one, such as the homography for an approximately planar scene in
aerial photography which usually causes a severe accumulation of
perspective distortions induced by a sequential set of aerial images
taken from a wide-range region , as illustrated in Fig. 1. In this case,
the available global constraint can make a big difference, such as
the approximate coplanarity of image planes which is utilized in our
approach.

After the global alignment is recovered, the following work for
creating a seamless mosaic from multiple aerial images captured
from a wide-range region is to try to conceal the parallax between
images induced by an inaccurate alignment inevitably existing in
a region with large depth differences. Generally, the methods of
concealing the parallax between images for image mosaicking [18,
19] can be divided into two main categories, smoothing transition
and optimal seamline detection. Smoothing transition methods try
to make given seams invisible and remove stitching artifacts by s-
moothing color differences between input source images. Alpha
blending [20] is a simple and fast smoothing transition method, and
has been widely used in image mosaicking. Optimal seamline de-
tection methods search for the seamlines in overlap regions between
images, around which intensity or gradient differences are not obvi-
ous in vision. Many methods regarded the seamline detection as an
energy optimization problem and solved it by minimizing the special
energy function which is defined to represent the image difference a-
long the seamlines [21, 22].

In this paper, we proposed a robust approach to create a globally
consistent and seamless mosaic from aerial images, whose flowchart
is illustrated in Fig. 2. Firstly we align the aerial images into a com-
mon coordinate system via an efficient globally consistent registra-
tion strategy recovering the affine model followed by the refinemen-
t of homographic model in groups, which can magnificently sup-
press the error accumulation of perspective distortions induced by a
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Fig. 2. The flowchart of our proposed approach for mosaicking aerial
images based on global alignment and parallax removal.

sequential set of aerial images captured from a wide-range region.
Secondly a novel optimized seamline detection algorithm formulat-
ed in a graph cuts energy minimization framework is performed for
efficiently concealing the parallax between aligned images in region-
s with large depth differences where it is difficult for recovering a
highly accurate consistent image registration based on the planar as-
sumption. Finally some convictive experimental results illustrate the
good performance of our proposed approach.

2. GLOBALLY CONSISTENT ALIGNMENT

To recover a robust global alignment of a large set of aerial images,
especially from a single strip, it is very necessary to utilize the avail-
able geometric constraint based on the imaging condition during the
global registration optimization procedure. Since all the aerial im-
ages are captured at a similar altitude and nearly parallel with the
ground, all image frame planes are on a common plane approximate-
ly, from which we can infer that the transformation model between
images is close to a 2D rigid transformation model. This globally
geometric constraint will be very helpful to keep the global consis-
tency via suppressing the accumulation of perspective distortions,
especially for the case of the long flight strips and the case of low
flight altitudes.

2.1. Image Alignment by Affine Model
To balance global consistency and alignment precision, we choose
the affine model to initially align each image, as a compromise be-
tween the 2D rigid transformation and the homographic transforma-
tion. On the one hand, approximately coplanar constraint is partly
implied in the six-parameter affine model which can suppress severe
perspective distortion to some extent due to accumulation of errors,
on the other hand, the affine transformation can provide a qualified
initial solution for the following homographic refinement.

Before aligning multiple images, we have to select the reference
frame which can be an image frame or an arbitrary coordinate frame.
As an image reference frame, the optimal one should satisfy some
criteria that its location is close to the center of the observed area
and most of its corresponding feature points to adjacent frames are
on the approximately planar ground. In this paper, while aligning a
new image to the reference frame, all the previously aligned images
having an overlap with the new image will be jointly used in the op-
timization framework. Let I = {Ii}n−1

i=1 be a set of aligned images
and Ai be the 2×3 affine transformation matrix of the image Ii with
respective to the reference frame. The affine transformation An of
the newly introduced image In for alignment will be optimized by
minimizing the following cost function:
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dinates of two corresponding points from Ii and In, respectively.
In fact, we often normalize the coordinates of matched points

according to the method proposed in [23], in order to increase the
numerical stability by improving the condition number of the coef-
ficient matrix. What’s more, the robust estimator MLESAC [24] is
employed to exclude outliers for affine estimation, because it is ben-
eficial for the mosaic of quasi-planar scenes. The optimal solution
of An in Eq. (1) is obtained by the Singular Value Decomposition
(SVD) method.

2.2. Alignment Refinement by Homographic Model
The above estimation process just recovers the locally optimal affine
model of each image. To get the globally optimal estimation, the pa-
rameters of all the transformation models must be optimized jointly.
Different from the method used in [25], we use the homographic
models to refine the alignments of aligned images under the global
consistency constraint already implied in the affine models. To in-
crease the stability of optimization, we carry out the optimization in
a two-stage strategy.

Firstly, we perform the optimization for a set of locally neighbor-
ing images as a group. Taking the single strip case for an example,
the first sequential m images as a group, e.g., G1 = {Ii}mi=1, the
next group of images will be G2 = {Ii}2m−3

i=m−2, and so on. There
are two common images between two adjacent groups, which main-
ly considers the existence of overlap in three sequential images. The
homographic models of a group of images with respective to the
reference frame are jointly optimized just in groups. If the homo-
graphic models of images overlapped with the previous groups have
been optimized, they will be fixed in the current group. It should
be noticed that a bigger value of m contributes to the global con-
sistency while decreases the stability and efficiency of optimization.
Given a group of images G = {Ii}m+s−1

i=s , their homographic mod-
els H = {Hi}m+s−1

i=s with respective to the reference frame can
be jointly optimized via minimizing the sum of squares of the point
reprojection errors between images in G as:
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nates of two corresponding points from Ip and Iq , respectively, and
ϖ(x) = [x/w, y/w]⊤ where x = [x, y, w]⊤. The parameters of es-
timated affine models are used as initial solution for optimizing the
homographic models. If the homographic model of some image in G
has been optimized in previous groups, it will be fixed in the current
optimization.

Another optimization objective is to keep the global consistency
for suppressing severe perspective distortions induced by a sequen-
tial set of aerial images. In other words, the optimal homograph-
ic transformation should be close to the initially estimated affine
transformation, which can be expressed as the displacements of the
warped features from their initial positions in the following cost
function:
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where Ap and Aq denote the initially estimated affine models for
Ip and Iq with respective to the reference frame, respectively. So



far, the cost functions defined in Eq. (2) and Eq. (3) can be linearly
combined to define the final cost function:

E(H) = Er(H) + λEd(H), (4)

where λ denotes the weight coefficient for the term Ed, which should
be set to an appropriate small value because this constraint is not so
strict.

After the optimization of all groups is sequentially finished, the
homographic models of all the aerial images as a whole group will be
further jointly optimized based on the same cost function in the sec-
ond optimization stage. The Levenberg-Marquard (LM) optimiza-
tion method is employed for finding the optimal solution.

3. PARALLAX REMOVAL

To remove the parallax between images in overlap regions with large
depth differences for image mosaicking, we proposed an effective
optimal seamline detection algorithm via graph cuts, which tries to
find seamlines with smallest difference in color and gradient magni-
tude between images in the overlap regions. The energy cost C(p)
of a pixel p of an image pair I=(Ip, Iq) with an overlap is defined
as:

C(p) = Cc(p) + Cg(p), (5)

where Cc(p) and Cg(p) represent the color difference term and the
gradient magnitude term, respectively.

The color difference for the pixel p in two images is computed
in the HSV color space rather than in RGB as:

Cc(p) = wh|Hp(p)−Hq(p)|+ ws|Sp(p)− Sq(p)|, (6)

where Hp(p) and Sp(p) denote the values of H and S channels of
p ∈ Ip and there are the same meanings for Hq(p) and Sq(p). The
weight coefficients wh and ws are used to balance the influence of
the differences at the H and S channels, which were set as wh = 1
and ws = 0.1 in this paper, respectively.

The gradient magnitudes of each pixel in the horizontal and ver-
tical directions are obtained via the Sobel operator in the grayscale
space. The gradient magnitude cost term Cg(p) is defined as:
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(
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where α is the balanced coefficient which was set as 0.25 in this
paper, Gx

p(p) and Gy
p(p) denote the horizontal and vertical gradient

magnitudes of p ∈ Ip, and there are the same meanings for Gx
q (p)

and Gy
q (p).

We formulate the optimal seamline detection as an energy min-
imization problem and use graph cuts to find the solution. The en-
ergy cost E(I) comprises of the data energy term Edata(I) and
the smooth energy term Esmooth(I), e.g., E(I) = Edata(I) +
Esmooth(I), where the data energy term represents the sum of en-
ergy costs for individual pixels within Ip or Iq as:

Edata(I) =
∑

p∈J
(Rp(Ip) +Rp(Iq)), (8)

where J is the last mosaic image, Rp(Ip) and Rp(Iq) represent the
cost of assigning p with Ip and Iq , which are defined as Rp(Ik) = 0
if p ∈ Ik otherwise Rp(Ik) = ∞ if p /∈ Ik, k = p, q. According to
the above definition, for each pixel p, its data energy only depends
on whether it is inside the valid region of one image.

The smooth energy term Esmooth(I) is defined as:

Esmooth(I) =
∑

(p,q)∈N (p)
σp,q · Esmooth(p,q), (9)
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Fig. 3. An example of optimal seamline detection for parallax re-
moval: overlapped edges (Left) and optimal seamlines (Right).

where N (p) denotes the 4-neighborhood pixel set of p, and the co-
efficient σp,q = 0 if the labels of the pixels p and q are the same
otherwise σp,q = 1. Esmooth(p,q) represents the smooth energy
between two pixels p and q on images I, which is defined as follow:

Esmooth(p,q) = C(p) + C(q), (10)

where C(p) and C(q) are the energy costs of the pixels p and q
defined in Eq. (5).

Based on the above proposed optimal seamline detection vi-
a graph cuts, the extracted seamlines in overlap regions between
images can visually conceal the parallax. Fig. 3(Right) shows the
seamline detection result of our proposed algorithm on 6 images of
a single strip 1, where our optimal seamlines successfully bypassed
the tall buildings where there exist large parallaxes between images.
The use of optimal seamlines can create a more coherent mosaic im-
age compared with the case of no seamlines. Some enlarged parts
below the mosaic image shown in Fig. 3 illustrates the validity of
our proposed optimal seamline detection algorithm.

4. EXPERIMENTAL RESULTS

To sufficiently test the performance of our proposed algorithm for
global alignment of aerial images, we chose a set of 90 aerial images
in three strips with the down-sampling image size of 746×480 and a
set of 48 UAV images in three strips with the down-sampling image
size of 800×533 for evaluation. These two test image sequences are
mainly different in flight altitudes and stability of image acquisition
platforms, in which there exist an overlapping rate of about 60% in
adjacent images.

4.1. Evaluation on Selection of Initial Models
In the period of recovering initial alignment described in Section 2.1,
the selection of the transformation model among rigid, affine and
homographic models can make some differences to the final mo-
saicking result, which are compared through conducting experiments
on the two datasets above. The comparative analysis was made of
both alignment precision and global consistency, and the numerical
results are shown in Table. 1 (“GO” denotes the final global opti-
mization) while the global consistency can be judged via the results
shown in Fig. 4.

As for the aerial image sequence, the homographic model cho-
sen as the initial model has the best alignment precision, but suffer-
s severe error accumulation of perspective distortions, as shown in
the last row of Fig. 4, because a homographic model has eight free
parameters for alignment without the consideration of the globally
consistent constraint. However, although a little inferior to that of the
homographic model in alignment precision, the rigid or affine model

1Available at http://www2.isprs.org/commissions/comm3/wg4/tests.html



Table 1. RMS of the reprojection errors for different transformation
models chosen for initial alignment (Unit: pixel).

Models Aerial Images UAV Images
RMS RMS (GO) RMS RMS (GO)

Rigid 0.848 0.733 2.033 1.476
Affine 0.795 0.716 1.742 1.429

Homographic 0.497 0.492 3.838 1.633

Fig. 4. The thumbnails of the mosaicking results on the aerial images
(Left) and the UAV images (Right) where the rigid model in the first
row, the affine model in the second row, and the homographic model
in the last row were chosen for initial alignment, respectively.

chosen as the initial model has obvious superiority over the homo-
graphic model in global consistency, which benefits greatly from the
approximate coplanarity implied in the characteristics of these two
models. Because of the low flight altitude, the comparatively large-
depth-difference ground greatly decreases the alignment precision
for the UAV image sequence, especially for the homographic model.
In this case, the global constraint is very useful in the optimization
stabilization, which produces a globally consistent mosaic with good
alignment precision. Compared with the rigid model, the affine mod-
el has a better alignment precision and a much lower computation
cost in optimization, especially for the case of low flight altitude.
Therefore, the affine model is the reasonable optimal choice for ini-
tial alignment. In addition, the final global optimization used in the
second stage in Section 2.2 can produce higher alignment precisions
as shown in Table. 1 because all the images as a whole group would
be jointly optimized.

4.2. Comparative Evaluation
In this section, we compared our approach with a commercial soft-
ware named PTGui 2. The visually comparative results of mosaick-
ing aerial images and UAV ones are illustrated in Fig. 5 and Fig. 6 re-
spectively, in which the optimal seamline detection and image blend-
ing are not applied.

From the mosaics shown in Fig. 5, the two mosaics have a
similar visual effects as a whole, though PTGui is a semi-automatic
software which involves some manual adjustment for improving
global consistency. However, when in alignment precision, our
approach has an obvious superiority over PTGui, which can be ob-
served from some enlarged regions. As for the UAV images, the
large-depth-difference ground makes the assumption of planarity
of the scene weaker, which results in even hard for keeping glob-

2http://www.ptgui.com/

Fig. 5. The mosaics created by our approach (Top with the reference
image marked in Cyan box) and PTGui (Bottom) from aerial images.

Fig. 6. The mosaics created by our approach (Left) and PTGui
(Right) from UAV images.

al consistency. The slightly down-scale tendency can be found in
the mosaicking result of our approach, such as the top-left part in
Fig. 6(Left). Since some strong constraints are employed for keeping
the scale of each image consistent, the mosaicking result of PTGui
has a quite different shape with that of our approach, meanwhile
these strong constraints greatly destroyed the alignment precision,
as the enlarged parts of the red box regions shown in Fig. 6. Due
to the limit of pages, more experimental results and analysis are
presented at http://cvrs.whu.edu.cn/projects/MAI/.

5. CONCLUSION

In this paper, we have proposed a novel aerial image mosaicking
method based on global alignment and parallax removal , which can
create a globally consistent mosaic image concealing the parallax
between images based on the optimal seamline detection via graph
cuts. The first contribution is the effective combination of affine and
homographic models in a multi-stage optimization process which
keeps both global consistency and precise alignment. The second
contribution is the optimal seamline detection via graph cuts based
on differences in color and gradient magnitudes for concealing the
parallax between aerial images. However, the global consistency
is not stable enough for the case of a large-depth-difference ground
relative to flight altitude, especially for the UAV platform, which will
be solved in the future by studying the selection of optimal reference
frame and the quick auto-organization of unordered aerial images.
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