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Abstract: In this paper, we propose a unified framework to generate a pleasant and high-quality1

street-view panorama by stitching multiple panoramic images captured from the cameras mounted2

on the mobile platform. Our proposed framework is comprised of four major steps: image warping,3

color correction, optimal seamline detection and image blending. Since the input images are4

captured without a precisely common projection center from the scenes with the depth differences5

with respective to cameras to different extents, such these images cannot be precisely aligned in6

geometry. So, an efficient image warping method based on the dense optical flow field is proposed to7

greatly suppress the influence of large geometric misalignment at first. Then, to lessen the influence8

of photometric inconsistencies caused by the illumination variations and different exposure settings,9

we propose an efficient color correction algorithm via matching extreme points of histograms10

to greatly decrease color differences between warped images. After that, the optimal seamlines11

between adjacent input images are detected via the graph cuts energy minimization framework.12

At last, the Laplacian pyramid blending algorithm is applied to further eliminate the stitching13

artifacts along the optimal seamlines. Experimental results on a large set of challenging street-view14

panoramic images captured form the real world illustrate that the proposed system is capable of15

creating high-quality panoramas.16

Keywords: Panorama Stitching ; Seamline Detection ; Image Warping ; Graph Cuts ; Image Parallax17

; Image Blending ; Color Correction18

1 Introduction19

Nowadays, as the development of street-view panoramas which provide 360◦ panoramic views20

along streets in the real world, the demand for high-quality panoramic images gradually becomes21

bigger. Image stitching is the key technology to produce high-quality panoramic images, which is22

also an important and classical problem in the field of photogrammetry [1–5], remote sensing [6–9]23

and computer vision [10–15], which is widely used to merge multiple aligned images into a single24

wide-angle composite image as seamlessly as possible.25

In an ideally static scene in which both the geometric misalignments and the photometric26

inconsistencies don’t exist or are not obviously visible in overlap regions, the stitched or mosaicked27

image looks perfect only when the geometric distance criterion is used. However, as we know, most28

of street-view panoramic images are captured by the panoramic camera mounted on the mobile29

platform. Generally, the panoramic camera is comprised of multiple wide-angle or fish-eye cameras30

whose projection centers are slightly different. Therefore, those images cannot be precisely aligned in31

geometry, namely, there exist the geometric deviations for corresponding pixels from different images32

to different extents. In addition, there also exist photometric inconsistencies to different extents in33
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overlap regions between adjacent images due to illumination variations and/or different exposure34

setting. This paper focuses on creating a visually pleasant street-view panorama by stitching or35

mosaicking the street-view panoramic images among which there may exist the severe geometric36

misalignments and the strong photometric inconsistencies.37

One traditional and efficient way to eliminate the stitching artifacts caused by the large geometric38

misalignments existed in the input aligned panoramic images is to detect the optimal seamlines39

which avoid crossing majority of visually obvious objects and most of overlap regions with low40

image similarity and large object dislocation. The optimal seamline detection methods search for41

the seamlines in overlap regions between images where their intensity or gradient differences are not42

significant. Based on the optimally detected seamlines, multiple aligned images can be mosaicked43

into a single composite image in which the obvious image parallax caused by image misalignments44

can be magnificently concealed. Many methods [2–6,16–19] regarded the optimal seamline detection45

as an energy optimization problem and solved it by minimizing a specially designed energy function46

defined to represent the difference between the original images along the seamlines. For these47

methods, the key ideas concentrate on how to define the effective energy functions and how to48

guarantee the optimality of the solution. The energy functions are often defined by considering color,49

gradient and texture, and are optimized via different optimization algorithms, e.g., snake model [20],50

Dijkstra’s algorithm [21], dynamic programming [22], and graph cuts [23]. Nowadays, the optimal51

seamline detected by many algorithms can avoid crossing the regions with low image similarity and52

high object dislocation. In our previous work presented in [19], we proposed an efficient optimal53

seamline detection algorithm for mosaicking aerial and panoramic images based on the graph cuts54

energy minimization framework. In this paper, we will apply this algorithm to detect the optimal55

seamlines.56

However, when the geometric misalignments are very large, the stitching artifacts maybe57

cannot be completely avoided even though the optimal seamlines are detected, especially for58

street-view panoramic images among which there always exist geometric misalignments at different59

extents due to that those images were captured from the scenes with large depth differences by60

the panoramic camera comprised of multiple wide-angle or fish-eye cameras without a precisely61

common projection center, which means that the geometric misalignments are different at different62

positions. Therefore, the large geometric misalignments existed in the input aligned panoramic63

images should be eliminated as much as possible before finding the optimal seamlines. In this64

paper, we creatively propose an image warping algorithm based on the optical flow field to reduce65

the geometric misalignments between input panoramic images. Image warping is a transformation66

which maps all positions in one image plane to the corresponding ones in another plane [24], which67

has been popularly applied in many fields of computer vision, such as image morphing [25,26],68

image retargeting [27,28] and image mosaicking [29,30]. The key technique of image warping is to69

find the appropriate transformation functions based on the control conditions and then eliminate the70

distortions between input images. One famous image warping algorithm worked based on thin-plate71

splines [31] that attempted to minimize the amount of bending in the deformation. They used the72

radial basis functions with thin-plate splines to find a space deformation defined by control points.73

However, the local non-uniform scaling and shearing possibly occurred in the deformed images. [32]74

firstly introduced the concept of as-rigid-as-possible transformations, which have the property that75

both local scaling and shearing are very slight. To produce as-rigid-as-possible deformations, [33]76

proposed a point-based image deformation technique, which firstly triangulated the input image, and77

then geometrically minimized the distortion associated with each triangle. However, this algorithm78

needs to triangulate the input image at first, and the results are maybe not smooth across triangle79

boundaries. [34] provided an image deformation method based on Moving Least Squares [35]80

using various classes of linear functions including affine, similarity and rigid transformations. It81

first found the deformation functions based on the control points or the line segments, and then82

applied the deformation functions onto each grid instead of each pixel to reduce the transformation83
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time. At last, it filled the resulting quads using the bilinear interpolation. [36] proposed an image84

warping algorithm based on radial basis functions, which formulated the image warping problem85

as the scattered data interpolation problem, and used the radial basis functions to construct the86

interpolation. It aimed to identify the best radial basis functions for image warping. Our used image87

warping method is similar to this algorithm, but we used the Multilevel B-Splines Approximation88

(MBA) [37] to solve the scattered data interpolation problem. Recently, the b-spline approximation89

technique has been widely used for image registration [38,39], image morphing, image warping,90

curve/surface fitting and geometric modeling.91

In addition, due to the differences of both the image capturing viewpoints and the camera92

exposure settings, there are large differences of color and brightness between the warped panoramic93

images. The large color differences between those images also can cause the stitching artifacts in the94

last stitched or mosaicked panorama. Also, the large color differences maybe affect the quality of the95

seamlines. So, we also need to suppress the color differences between warped images before we apply96

the optimal seamline detection. Generally, the color correction approaches can be divided into two97

broad categories according to [40]: parametric and non-parametric. Panoramic approaches assume98

that the color relationship between images can be described by a certain model. Few noteworthy99

parametric approaches are described here. [41] proposed a simple linear model to transform the100

color of the source image to the target image. The transformation matrix was estimated by using the101

histogram mapping over the overlap regions. [12] applied the gain compensation (i.e., the diagonal102

model) to reduce color differences between input images. They computed all gains by minimizing an103

error function, which is the sum of gain normalised intensity errors for all overlapping pixels. [42]104

also employed the diagonal model for the color and luminance compensation where the correction105

coefficients were computed as the ratio of sum of pixel values in the overlap regions. As stated in [43],106

the linear transformation models can provide a simple yet effective way to transform colors, but they107

have clear limitations in explaining the complicated nonlinear transformations in the the imaging108

process. Non-parametric approaches can handle this problem well. Non-parametric approaches109

don’t follow any particular model for the color mapping, and most of them use some form of a110

look-up table to record the mapping of the full range of color levels. As stated in [40], parametric111

approaches are more effective in extending the color in non-overlap regions without generating gain112

artifacts, while non-parametric approaches can provide better color matching results. [44] proposed113

to use the joint histogram of correspondences matched using the SIFT features [45] to correct the color114

differences. The color mapping function was estimated by using an energy minimization scheme.115

[46] proposed a color correction approach by using the cumulative color histogram. This method116

used the cumulative histogram-based mapping to automatically adapt the color of all source images117

to the reference image. [43] presented a nonlinear and nonparametric color transfer framework that118

operates in a 3D color space. Based on some control corresponding colors in a given image pair,119

this method used the probabilistic moving least squares to interpolate the transformation functions120

for each color. We correct the color differences between two images based on the matched extreme121

points which are extracted from the histograms over the overlap regions. Both the Probability Density122

Functions (PDFs) and Cumulative Distribution Functions (CDFs) are used to find the reliably matched123

extreme points. To reduce the gain artifacts in non-overlap regions, we propose to apply the alpha124

correction method to smooth the transition from non-overlap regions to overlap ones.125

Although we propose efficient approaches to correct the color differences and detect the optimal126

seamlines between warped panoramic images, there maybe also exist some color transitions along127

the seamlines due to that the color differences cannot be eliminated completely. In order to further128

conceal these artifacts, the image blending techniques can be further applied along the seamlines.129

In the last several decades, many image blending algorithms have been proposed to smooth the130

color differences along the seamlines, such as feathering [47], alpha blending [48], Laplacian pyramid131

blending [49], poisson blending [50] and gradient domain image blending approach [51]. In this132
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Figure 1. Our proposed unified framework for the street-view panorama stitching system.

paper, we simply applied the Laplacian pyramid blending algorithm [49] to eliminate the stitching133

artifacts and generate the last pleasant panorama.134

In this paper, we propose a unified framework for our developed street-view panorama stitching135

system, as described in Figure 1. First, multiple original images, which were captured from a136

single panoramic camera comprised of multiple wide-angle or fish-eye cameras (usually digital SLR137

cameras) without a precisely common projection center, are fed into our stitching system as the input.138

Therefore, we will align these input images into a common spherical coordinate system based on the139

found feature correspondences using the existing open-source library. After that, our proposed image140

warping method based on the dense optical flow field approximately interpolated from the sparse141

feature matches, which is detailed described in Section 2, is used to greatly reduce the geometric142

misalignments. Then, an automatic contrast adjustment and an efficient histogram-matching-based143

color correction approach presented in Section 3 are used to reduce the color differences. Finally,144

we adopt an efficient seamline detection approach based on the graph cuts energy minimization145

framework to find the optimal seamlines between two overlapped images followed by applying146

the image blending to eliminate the color transitions along the seamlines. By our proposed unified147

panorama stitching framework, our system can generate a pleasant street-view panorama as seamless148

as possible by stitching multiple panoramic images from the cameras mounted on the mobile149

platform. Experimental results on challenging street-view panoramic images are reported in Section 5150

followed by the conclusions drawn in Section 6.151

2 Image Warping152

In our developed street-view panorama stitching system, we first check whether all input images153

are geometrically aligned into a common spherical coordinate system. If not, we will align them by154
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using the open-source library PanoTools 1, which is also served as the underlying core engine for155

many image stitching softwares, such as PTGui 2 and Hugin 3. However, there always exist large156

geometric misalignments between these aligned images at different extents because those images157

were captured from the scenes of large depth differences by a single panoramic camera comprised158

of multiple wide-angle or fish-eye cameras without a precisely common projection center. Those159

geometric misalignments are so large that the stitching artifacts cannot be avoided completely even160

though the optimal seamlines are detected out for the use of the image stitching. To ensure the161

high-quality of the last stitched panorama, we propose to apply the image warping technique to162

eliminate those large geometric misalignments as far as possible. To describe our proposed image163

warping algorithm more clearly, we first consider a simple case of two aligned images I and I′ with164

an overlap. The process of our proposed image warping algorithm is described as follows. Firstly,165

the corresponding points between two images are found as the control points of image warping, and166

the sparse optical flows are calculated for those control points. Secondly, the Multilevel B-Splines167

Approximation (MBA) algorithm [37] is used to approximately interpolate the dense optical flows168

for all integral pixels in the warped image with respective to the original one from the sparse optical169

flows. Lastly, we warp the input two images based on the dense optical flows and thus the geometric170

misalignments can be greatly lessened. For the case of multiple images to be stitched to the last171

panorama, a simple strategy is proposed to first handle the horizontal images and then deal with the172

vertical ones.173

2.1 Feature Point Matching174

To warp two images with large geometric misalignments, we need to find the control points175

at first. The quality of the warped image mainly depends on the accuracy and densities of control176

points. In this paper, we apply the feature matching algorithm to robustly find the sparse matching177

points, namely the control points. The main ideal for feature matching is to first extract local invariant178

features independently from two images and then characterize them by invariant descriptors. The179

distance between two descriptor vectors is used to identify candidate matches. However, the180

nearest neighbors is not always the best match due to occlusion and deformation derived from181

large viewpoint changes and repeated structures in the scenes. Generally, the epipolar geometrical182

constraint works well to filter the outliers, but it is not available for the panoramic images aligned in183

advance. Thus, we need to apply another strategy to filter the outliers. [52] proposed that the motion184

of one match would be consistent with those of neighbors, and the experimental results presented185

in [52] sufficiently show that this strategy is simple but effective. Inspired by this idea, we propose a186

new feature matching algorithm for panoramic images. The major steps of the proposed algorithm187

include initial matching and outlier detection, which are summarized in Algorithm 1. An example188

of finding point correspondences between two panoramic images with an overlap is illustrated in189

Figure 2.190

2.1.1 Initial Matching191

Given two adjacent images I and I′ with an overlap, the local invariant features are extracted and192

described by the SURF algorithm [53]. Let f = (x, d) be a feature point where x = (x, y)> denotes193

the 2D coordinate of this feature point and d represents its corresponding invariant descriptor vector,194

and F = {fi|fi = (xi, di)}M
i=1 and F ′ = {f′j|f′j = (x′j, d′j)}N

j=1 be the feature point sets extracted from I195

and I′, respectively, where M and N denote the numbers of the feature points extracted from I and I′,196

1 Available at http://www.panoramatools.com/
2 Available at http://www.ptgui.com/
3 Available at http://hugin.sourceforge.net/

http://www.panoramatools.com/
http://www.ptgui.com/
http://hugin.sourceforge.net/
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Algorithm 1 The proposed feature point matching algorithm.

1. Initial Matching

(a) Extract and describe two sets of local invariant features from two overlapped images I and
I′ by using the SURF algorithm, respectively;

(b) Find the initial point matchesMinitial between I and I′ according to the conditions listed
in Section 2.1.1.

2. Outlier Detection

(a) Set the value of λ used in Eq. (3) as λmax;
(b) Find the neighboring inlier matches Ninlier(fp) for each match 〈fp, f′q〉 ∈ Minitial, and

then calculate the mean motion µµµ(fp) and the standard deviation σσσ(fp) of all matches in
Ninlier(fp);

(c) Sort all matches inMinitial in the decreasing order according to their costs defined in Eq. (4),
and only check whether the top Nt matches are inliers or outliers in each iteration;

(d) Iterate the steps (b)-(c) until the maximum number of iterations is reached or no more
outliers can be found in the current iteration.;

(e) Decrease the value of λ with the step λstep and iterate the steps (b)-(d) until the smallest
value λmin is reached.

respectively. Generally, for one feature point fp in F , the feature point f′q with the nearest Euclidean197

distance d(fp, f′q) = min
f′j∈F ′

||dp−d′j||which is not larger than a predefined threshold Td can be regarded198

as the corresponding matching point of fp. However, this simple strategy has some drawbacks in199

the context of feature matching. This mainly because that the distance values between different200

corresponding pairs may vary in a relatively large range, so any permissive distance threshold Td201

can not avoid the appearance of high rate outliers when covers most of the good correspondences.202

Thus, we propose to modify the matching strategy as follows. In this paper, we accept two feature203

points fp and f′q as a potential match only when they satisfy the following conditions:204

• The feature points fp ∈ F and f′q ∈ F ′ are the nearest neighbors of each other. Namely, for the205

feature point fp, f′q is its nearest neighbor in F ′. At the same time, for the feature point f′q, fp is206

its nearest neighbor in F .207

• The Euclidean descriptor vector distance d(fp, f′q) between two feature points fp and f′q is not208

larger than Td, i.e., d(fp, f′q) = ‖dp − d′q‖ ≤ Td.209

• We represent the nearest distance between fp and F ′ as d1(fp,F ′) = d(fp, f′q) = min
f′j∈F ′

||dp −210

d′j|| and the next distance as d2(fp,F ′) = min
f′j∈F ′ ,f

′
j 6=f′q
||dp − d′j||, respectively. The distance ratio211

r(fp,F ′) = d1(fp,F ′)/d2(fp,F ′) should be smaller than the predefined threshold Tr. Similarly,212

for the feature point f′q, the distance ratio r(f′q,F ) = d1(f′q,F )/d2(f′q,F ) should be smaller than213

Tr too.214

By this matching strategy, we obtain a set of initial matches denoted as Minitial = {〈fp, f′q〉|fp ∈215

F , f′q ∈ F ′}.216

2.1.2 Outlier Detection217

After initial matching, there maybe still exist a few outliers in Minitial. Of course, we need to218

filter out those outliers. The widely used constraint of the epipolar geometric constraint cannot be219

efficiently used in panoramic images, especially when the panoramic images have been aligned into220

a common spherical coordinate system in advance. According to the assumption proposed by [52]221

that the matches in a small neighborhood tend to have the consistent location changes (i.e., motions).222

In this paper, we also apply this assumption to identify the outliers.223
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(a) (b) (c)

(d) (e) (f)
Figure 2. An illustrative example for feature point matching between two aligned panoramic images:
(a) the point correspondences produced by initial matching; (b)-(c) the filtered point correspondences
after the first iteration (λ = 6) and the last one (λ = 3) of outlier detection, respectively. The local
detailed regions of (a)-(c) are presented in (d)-(f), respectively. The red circles denote the positions of
the matched points in the current image points and the yellow lines represent the optical flows (i.e.,
motions) of the matched points in the current image with respective to another image.

Given a match 〈fp, f′q〉, the motions from fp to f′q along the horizontal direction and the vertical
one are calculated, respectively, as follows:m(x)

p = x′q − xp,

m(y)
p = y′q − yp,

(1)

where fp = (xp, yp)> and f′q = (x′q, y′q)>. Thus, the magnitude value of the motion vector

(m(x)
p , m(y)

p )> can be calculated as:

m(x,y)
p =

√(
m(x)

p

)2
+
(

m(y)
p

)2
. (2)
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Here, we use m(fp) =
(

m(x)
p , m(y)

p , m(x,y)
p

)>
to represent all the three motion components of the match224

〈fp, f′q〉.225

At first, we assign the labels of all matches as Inlier, namely, for each match 〈fp, f′q〉 ∈ Minitial, the
label L(〈fp, f′q〉) = Inlier, and then we iteratively find the outliers. For each match 〈fp, f′q〉 ∈ Minitial,
we find Kn (Kn = 60 was used in this paper) neighboring match points of fp from F denoted as the
set N (fp). Then we collect all matches whose labels are Inlier from N (fp) as a new set Ninlier(fp). If
the number of inliers in N (fp), namely, the size of Ninlier(fp), is less than Ki (Ki = 10 was used in
this paper), we directly label this match as an Outlier, namely, L(〈fp, f′q〉) = Outlier, otherwise, we
determine whether this match is an inlier by checking whether it has the consistent motion with its
neighbors Ninlier(fp). For each match 〈fm, f′n〉 ∈ Ninlier(fp), the motion m(fm) from fm to f′n can be

calculated according to both Eq. (1) and Eq. (2). Then, the mean motion µµµ(fp) =
(

µ
(x)
p , µ

(y)
p , µ

(x,y)
p

)>
and the standard deviation of all the motions σσσ(fp) =

(
σ
(x)
k , σ

(y)
k , σ

(x,y)
k

)>
of all match points in

Ninlier(fp) can be determined easily. According to the following measurement proposed by [52], the
label of the match 〈fp, f′q〉 can be determined as follows:

L(〈fp, f′q〉) =
{

Inlier, dist(m(fp), µµµ(fp)) ≤ λ× σσσ(fp),

Outlier, Otherwise,
(3)

where dist(m(fp), µµµ(fp)) = |m(fp) − µµµ(fp)| denotes the absolute distances in three components226

between the motion m(fp) of the match 〈fp, f′q〉 and the mean motion µµµ(fp) of its neighbor matches,227

and λ is a predefined parameter. However, this measurement has two following drawbacks. To228

overcome these two drawbacks, we propose the corresponding strategies.229

One drawback is that the inliers around the outliers may also be labeled as Outlier. As shown in230

Figure 3, apparently, the black point with the inconsistent motion with its neighbors is the outlier, we231

can remove it easily according to the measurement defined in Eq. (3). However, due to the existence232

of this outlier, the inliers (marked in red points) around it maybe also have large deviations with233

respective to the corresponding mean motions. So, those inliers may also be regarded as outliers. But,234

if we remove the black point as an outlier at first, the deviations with respective to the mean motions235

of the rest red points will be decreased dramatically and can all be labeled as Inlier certainly. Thus,236

for each match 〈fp, f′q〉, we first evaluate its cost of assigning this match as Outlier as follows:237

Cost(fp) =
µ
(x)
p − µ

(x)
min

µ
(x)
max − µ

(x)
min

+
µ
(y)
p − µ

(y)
min

µ
(y)
max − µ

(y)
min

+
µ
(x,y)
p − µ

(x,y)
min

µ
(x,y)
max − µ

(x,y)
min

+

σ
(x)
p − σ

(x)
min

σ
(x)
max − σ

(x)
min

+
σ
(y)
p − σ

(y)
min

σ
(y)
max − σ

(y)
min

+
σ
(x,y)
p − σ

(x,y)
min

σ
(x,y)
max − σ

(x,y)
min

, (4)

where µ
(x)
min = min

p
µ
(x)
p , σ

(x)
min = min

p
σ
(x)
p , µ

(x)
max = max

p
µ
(x)
p and σ

(x)
max = max

p
σ
(x)
p denote the minimum238

and maximal mean and standard deviations in the x component of all match points in Minitial,239

respectively, and others have the same meanings. Apparently, the black point (outlier) shown in240

Figure 3 has a bigger cost, and the red points (inliers) have smaller costs. Then, all match points241

are sorted in the decreasing order according to their costs defined in Eq. (4). In each iteration, we242

only check whether the top Nt matches are inliers or outliers according to the measurement defined243

in Eq. (3), where Nt = ρ× Ninlier(Minitial), ρ is the predefined proportion parameter (ρ = 0.025 was244

used in this paper) and Ninlier(Minitial) denotes the number of matches with the label Inlier inMinitial.245

We end up the iterations until the maximum number of iterations is reached or no more matches can246

be labeled as Outlier. By this way, the ouliers with larger deviations with respective to neighboring247

points will be robustly filtered out step-by-step.248
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Figure 3. An visual example of outliner detection. The black point means an outlier, the red points
mean inliers, and the green lines represent the motions of corresponding match points.

Another drawback is that the value of the parameter λ in Eq. (3) is difficult to be determined. If249

the value of λ is small, many inliers may be assigned as Outlier. In contrast, if the value of λ is big,250

many outliers may be assigned as Inlier. Thus, in this paper, we iteratively decrease the value of λ251

from λmax to λmin with the step λstep (λmax = 6 and λmin = 3, λstep = 3 were used in this paper).252

Namely, we first set λ = λmax, and perform the outlier detection process until no more outliers can be253

found. Then, we iteratively decrease the value of λ with a step λstep, and repeat the outlier detection254

process until the value of λ reaches to λmin. At last, we can find all inliers fromMinitial denoted as255

the setMinlier = {〈fm, f′n〉|fm ∈ F , f′n ∈ F ′}.256

2.2 Approximate Interpolation of Dense Optical Flows257

Let Ī and Ī′ be the warped images of two adjacent images I and I′, respectively. The aim of our
proposed image warping algorithm is to ensure that the geometric alignments between the warped
images Ī and Ī′ become smaller. To achieve this objective, we propose to approximately interpolate
the optical flows of all the integral pixels in Ī with respective to I and all the integral pixels in Ī′ with
respective to I′ based on the disparity vectors of the reliable point matches with respective to each
other as the control points. Firstly, we calculate the disparity vectors d(xm) and d(x′n) of each reliable
point match 〈xm, x′n〉 inMinlier from the warped images to the original ones as follows:

d(xm) =
1
2
(xm − x′n) =

1
2
(xm − x′n, ym − y′n)

>,

d(x′n) =
1
2
(x′n − xm) =

1
2
(x′n − xm, y′n − ym)

>,
(5)

where xm = (xm, ym)> and x′n = (x′n, y′n)>. By this way, we expect to warp the images I and I′ based258

on the half offsets of real disparity vectors to reduce the warping distortion.259

Secondly, we propose to approximately interpolate the optical flows of all integral pixels in260

the warped images Ī and Ī′ based on the disparity vectors {d(xm)}xm∈Minlier
and {d(x′n)}x′n∈Minlier

261

of the control points {xm − d(xm)}xm∈Minlier
and {x′n − d(x′n)}x′n∈Minlier

, respectively. This problem262

can be formulated as the scattered data interpolation problem. Due to the sparsity of the control263

points, in this paper we adapt to apply the Multilevel B-Splines Approximation (MBA) [37] to solve264

this problem, which has been widely used for image registration, image morphing, image warping,265

curve/surface fitting and geometric modeling. By this MBA interpolation, we separately interpolate266

the horizontal and vertical components of optical flows (i.e., disparity vectors) of all the integral pixels267

in Ī and Ī′, respectively. In this way, we finally obtain the dense optical flows D(Ī) = {d̃(p)}p∈Ī and268
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D(Ī′) = {d̃(p′)}p′∈Ī′ of all the integral pixels {p}p∈I and {p′}p′∈I′ in the warped images Ī and Ī′ with269

respective to the original images I and I′, respectively.270

2.3 Two Image Warping271

Here, we demonstrate how to generate the warped image Ī from the original image I based on272

the dense optical flows D(Ī) of Ī with respective to I, and the generation of the warped image Ī′ is273

similar. For each pixel p ∈ Ī, we can easily calculate its corresponding 2D position in I based on its274

approximately interpolated optical flow (i.e., disparity vector) d̃(p) as p + d̃(p). Then, we use the275

bilinear interpolation algorithm to interpolate the intensity of the corresponding point p + d̃(p) in I276

as the intensity of the integral pixel p ∈ Ī.277

According to the above image warping procedure, we can obtain two warped images from two278

input panoramic images with the overlap. The geometric misalignments between warped images279

become smaller than those between the original images after warping correction.280

2.4 Multiple Image Warping281

Until now, we have introduced how to warp two images based on the optical flows. But, we282

need to warp multiple input images to generate the last panorama. In the experimental results283

presented in this paper, the input images are comprised of 5 horizontal ones and 1 vertical one,284

which are represented as (I1, I2, I3, I4, I5, I6) whose correspondingly warped images are represented285

as (Ī1, Ī2, Ī3, Ī4, Ī5, Ī6), and the overlap relationship of those images is shown in Figure 9. For this286

particular case, here we will detailedly introduce how to warp these six images for producing the287

last panorama before color correction. Other cases of multiple images can be handled in a similar288

way. For multiple input panoramic images, we first collect all image pairs according to their overlap289

relationship as shown in Figure 9. Obviously, there are five image pairs along the horizontal direction,290

and one image pair along the vertical direction. We first handle the horizontal image pairs and291

then deal with the vertical image pair. For each horizontal image pair, we match them one by one292

by the method presented in Section 2.1, as an illustrative example shown in Figure 4, from which293

we can find that one horizontal image is overlapped with two adjacent images in the horizontal294

direction. For example, for the image I1, it overlaps with I2 and I5, respectively, so we need to collect295

all matching points from these two overlap regions as the control points for warping I1. The dense296

optical flow field of the warped image Ī1 with respective to the original image I1 can be approximately297

interpolated based on those control points via the MBA algorithm. Therefore, five horizontal warped298

images Ī1, Ī2, Ī3, Ī4 and Ī5 can be generated by warping their corresponding original images according299

to the method presented in Section 2.3, respectively. Figure 5 shows an example for warping one300

horizontal image. After that, we generate the bottom blended image IH by blending all horizontal301

warped images according to the proposed color correction method presented in Section 3 and the302

adopted image mosaicking strategy described in Section 4. Finally, to produce the last panorama, the303

top image I6 and the horizontal blended image IH will be warped according to those matching points304

as the control ones.305

3 Color Correction306

The large geometric misalignments can be efficiently eliminated by our proposed image warping307

algorithm, but there also exist the color differences between the warped images, so the stitching308

artifacts are still visible. Generally, the image blending technique can solve it easily by smoothing309

the color along the seamlines. However, it does not work well for input images with very large310

color differences. The simple image blending maybe can not efficiently conceal the artifacts if we311

don’t magnificently correct color differences between images in advance, which results in low-quality312
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Figure 4. The feature matching results of all five horizontal image pairs in the overlap regions.

(a) (b) (c)

Figure 5. An illustrative example of image warping: (a) the original aligned image; (b) the dense
optical flows approximately interpolated by the MBA algorithm; (c) the last warped image. In (b), the
deeper orange means the larger disparity.

panoramic images, as an illustrative example shown in Figure 6. In addition, the large color313

differences maybe also affect the quality of the detected seamlines. Thus, in this paper, we propose314

to reduce the color differences between warped images before the optimal seamlines are detected.315
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(a) the initial stitched image (b) only image blending used (c) image blending after color
correction

Figure 6. An example of our proposed color correction strategy used to improve the panorama
stitching quality before apply the image blending.

Generally, the color differences should be also corrected before the image warping step to ensure316

the quality of feature matching results. But our adopted SURF feature matching algorithm is robust317

enough to the large photometric inconsistencies, so there are no obvious influence on our algorithm318

if we apply the color correction after image warping.319

In this paper, we first apply the automatic contrast adjustment to reduce the brightness320

differences between images and then propose a novel and efficient color correction algorithm via321

matching extreme points of intensity histograms to further reduce the color differences. For the322

overlap image regions between two images, we construct their own Probability Density Functions323

(PDFs) and Cumulative Distribution Functions (CDFs) with respect to the intensity histograms in324

the three HSV channels, respectively. One way to eliminate color differences is to ensure that the325

three CDFs of the overlap regions in the first image in the three HSV channels are approximately326

same to those CDFs of the overlap regions in the second image, respectively. Obviously, we can327

correct the CDFs based on several uniformly spaced knots as [54] did. However, due to the existence328

of geometric misalignments, the scenes presented by two images in the overlap regions are not329

completely consistent. To solve this problem, we replace the knots by the matched extreme points330

extracted from the two PDFs. If the number of matched extreme points is not sufficient, we will331

suitably introduce those uniformly space knots. At last, the intensities of all the pixels in the two332

images are modified afterwards based on the matched extreme points extracted from the PDFs, not333

only for the pixels in the overlap regions, but also in the non-overlap regions.334

3.1 Automatic Contrast Adjustment335

At first, in order to make sure that multiple images have the similar contrast, which can produce
satisfactory blending results, the three RGB channels of individual images are automatically adjusted
in contrast. The histograms of a color image are calculated firstly in each of the three RGB channels,
respectively. Let I be a single-channel image and I = {Ik}N

k=1 be a set of one dimensional sorted
intensities of all valid pixels in I in the ascending order where N denotes the total number of valid
pixels in I and Ik represents the intensity of the k-th sorted pixel in I. The minimal and maximal
intensities Imin and Imax in I are defined, respectively, as follows:

Imin = IdN×c%e and Imax = IdN×(1−c%)e, (6)

where d∆e denotes the upper integer of a real value ∆ and c is a small percentage value in the
range of (0, 50) (c = 0.1 was empirically used in this paper), which can be used to skip over a
part of the real minimal and maximal intensities due to the fact that these pixels may be caused
by noises and information lacking in most cases. The minimal and maximal intensity values of
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the R, G and B channels of a color image are denoted as Rmin, Gmin, Bmin, Rmax, Gmax, and Bmax,
respectively. The minimal and maximal intensity values of the whole color image are defined as
Vmin = min(Rmin, Gmin, Bmin) and Vmax = max(Rmax, Gmax, Bmax), respectively. Therefore, any
intensity I of the R, G and B channels of a color image will be modified as:

I′ =


0, I ≤ Vmin,
255× I−Vmin

Vmax−Vmin
, Vmin < I < Vmax,

255, I ≥ Vmax.
(7)

In the same way, all the images to be used for creating a panorama will be automatically adjusted in336

contrast, which will slightly reduce the brightness differences between images.337

3.2 Finding Extreme Points338

After applying the automatic contrast adjustment on the multiple panoramic images, we propose339

to further reduce the color differences between panoramic images by matching extreme points of340

histograms. For the statistic analysis, only valid pixels in the overlap regions between two images are341

considered. Let A and B be the overlap image regions in two images, respectively. To make a better342

description of the information hidden behind the image, we convert A and B from the original RGB343

color space to the HSV color space, respectively. For each channel of A and B, we calculate their PDFs344

and CDFs, which are denoted as PDFA, PDFB, CDFA, and CDFB, respectively.345

To robustly find extreme points in both PDFA and PDFB, these two PDFs are smoothed first by346

a Gaussian function to suppress possible noise. The initial local extreme points can be easily obtained347

from the smoothed PDFA and PDFB. In an ideal situation, the extreme points should be uniformly348

distributed in the color space. However, most of the extreme points are relatively centralized in some349

cases, which will lead to the information redundancy due to that multiple extreme points are selected350

out to represent the similar image statistical information. To avoid the situation mentioned above,351

we further checkout all initial extreme points by the local window suppression. Let {Li
A}K

i=1 be the352

intensities of K extreme points {Pi
A}K

i=1 in PDFA, which are sorted in the ascending order. Given an353

extreme point Pi
A, we generate a neighborhood range [Li

A−w, Li
A +w] centered on the corresponding354

intensity Li
A with the size of (2w + 1). We set w = 2 if not specifically stated in this paper. If there355

exist more than one extreme points located in this neighborhood range, the extreme point with the356

highest frequency in PDFA will be retained and other extreme points will be removed. All initial357

extreme points are checked in this way and the retained extreme points are used for the following358

matching. The final extreme points extracted from PDFA and PDFB are represented as {Pi
A}

NA
i=1 and359

{Pj
B}

NB
j=1, where NA and NB are the numbers of extreme points in PDFA and PDFB, respectively. For360

each extreme point P, it consists of 4 components according to P = {F, L, Ĉ, Č} where F denotes361

the frequency of this point in PDF, L represents the corresponding intensity, and Ĉ and Č means the362

cumulative values of the intensities (L + ε) and (L− ε) in CDF (we set ε = 2 if not specifically stated363

in this paper).364

3.3 Matching Extreme Points365

The extreme points can sufficiently reflect image statistical characteristics. To efficiently adjust
the color differences, one way is to ensure that the intensities of corresponding extreme points are
the same. Thus, we should match the extreme points firstly. To reliably match these extreme points
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Figure 7. A visual example of our proposed color correction approach: (a)-(b) the overlap image
regions of the input left and right images, respectively; (c)-(d) the curves of PDF and CDF in one
channel where the red curves stand for the left image and the blue ones stand for the right image, and
the matched peaks are marked by the same number and connected by the black dotted lines; (e)-(f)
the corrected left and right images, respectively.

{Pi
A}

NA
i=1 and {Pj

B}
NB
j=1, we define a cost function to measure the matching similarity of two extreme

points Pi
A and Pj

B as:

Cost(Pi
A, Pj

B) =
Fi

A + Fj
B

2Fmax
×

min(Fi
A, Fj

B)

max(Fi
A, Fj

B)
×

max(Ĉi
A − Či

A, Ĉj
B − Čj

B)

max(Ĉi
A, Ĉj

B)−min(Či
A, Čj

B)
, (8)

where Fmax is the maximal frequency of all the extreme points in both PDFA and PDFB. The above

cost function judges the two extreme points from the view of both PDF and CDF. The first term Fi
A+Fj

B
2Fmax

indicates that those possibly matched extreme points with the higher frequencies generates higher
costs, which may be peaked out first in the following matching selection strategy. The second term
min(Fi

A ,Fj
B)

max(Fi
A ,Fj

B)
indicates that there are the similar frequencies for two possibly matched extreme points

Pi
A and Pi

B. The last term is applied to ensure that the accumulative values of two possibly matched
extreme points Pi

A and Pi
B are approximate. From this term, we can find that if the small range of

cumulative values of two extreme points are similar, the numerator max(Ĉi
A− Či

A, Ĉj
B− Čj

B) is close to

the denominator max(Ĉi
A, Ĉj

B)−min(Či
A, Čj

B), which results in that this term is close to 1. In contrast,
if the numerator is smaller and the denominator is larger, this term will approach to 0. In summary,
if the frequencies of two extreme points are larger and more similar, and the accumulative values
of those points are more approximate, their matching cost is bigger. In contrast, it is smaller. The
higher the cost function value is, the more likely these two extreme points are matched. Based on this
cost definition, a NA × NB matching cost matrix M = [Mij]NA×NB is created. In order to efficiently
eliminate the impossibly matched extreme points, we empirically designed three hard conditions
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from the view of both PDF and CDF to check whether two extreme points Pi
A and Pj

B are possibly
matched as follows: 

min(Fi
A, Fj

B)

max(Fi
A, Fj

B)
< θ f ,

Či
A > Ĉj

B + θc × Cmax,

Čj
B > Ĉi

A + θc × Cmax,

(9)

where θ f and θc are two empirical thresholds (θ f = 0.25 and θc = 0.02 were used in this paper), Cmax366

is the maximal value of CDF, namely, the valid pixel number of overlap regions. The matching cost367

Cost(Pi
A, Pj

B) is set to zero, i.e., Mij = Cost(Pi
A, Pj

B) = 0, if at least one of the above three conditions368

is not met, namely, Pi
A and Pj

B are not possibly matched. From the view of PDF, the first condition369

indicates that the frequencies of the two possibly matched extreme points Pi
A and Pj

B should be a370

relatively small difference. From the view of CDF, the second and third conditions indicate that371

Pi
A and Pj

B are possibly matched if their corresponding CDF values are approximate. According to372

the above three hard conditions, the matching cost matrix M will be updated, in which all the zero373

elements indicate that they are not possibly matched.374

Based on the computed matching cost matrix M, we propose an efficient iterative strategy to find375

the matched extreme points as the following steps:376

• Step 1: Finding the highest non-zero cost element Mij from the matrix M and its corresponding377

extreme points Pi
A and Pj

B is selected out as a reliable extreme point match.378

• Step 2: Updating the matrix M by removing the i-th row and the j-th column due to that Pi
A and379

Pj
B have been successfully matched.380

• Step 3: Performing the above two steps iteratively until the updated matrix M is empty or there381

exists no non-zero element in M.382

By the above iterative strategy, a set of reliable extreme point matches will be found. In Figure 7, we383

have shown a visual example of our proposed color correction approach. The input two images have384

large color differences in overlap regions, as shown in Figures 7(a)-(b). We find 5 matched extreme385

points in PDF of one channel. Based on those correspondences, the large color differences can be386

eliminated, as shown in Figures 7(e)-(f). From this example, we can find that our proposed approach387

can handle the images with large color differences very well.388

Sometimes, no match or too few matches can be reliably found via the above matching strategy389

in the whole CDF range or some relatively large CDF range. In this case, we will introduce more390

matches with the help of both CDFA and CDFB, which are selected from H uniformly distributed391

points {Ck
A}H

k=1 and {Ck
B}H

k=1 from CDFA and CDFB, respectively, but not from the previously found392

extreme points. The same number of sampling points in CDFA and CDFB are uniformly selected393

in accordance with the cumulative density values. In our experiments, the percentages of sampling394

intervals were used as [0.1, 0.3, 0.5, 0.7, 0.9]. If there exists no extreme point match found in the ranges395

[Ck
A − κCmax, Ck

A + κCmax] and [Ck
B − κCmax, Ck

B + κCmax], the current sampling points Ck
A and Ck

B will396

be added into the matching set as a new point match, where κ is a given threshold in advance (κ = 0.1397

was used in this paper).398

3.4 Correcting Color Difference399

The extracted matching points in the overlap image regions are then applied to correct the
intensities of two adjacent images, including the pixels in non-overlap regions. Let {Qk

A}N
k=1 and

{Qk
B}N

k=1 be the final matching points in CDFs in the overlap regions A and B with N point matches.
Based on the matching results, the intensities of the matching points Qk

A and Qk
B are modified to

(Lk
A + Lk

B)/2 where Lk
A and Lk

B denote the intensities of k-th match (Qk
A, Qk

B) in CDFs, respectively.
In this way, the intensities of {(Qk

A, Qk
B)}N

k=1 are corrected to {(L̂k
A, L̂k

B)}N
k=1, respectively, where
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(a) (b)

Figure 8. An illustration of the alpha weighting fusion map of two adjacently warped images: (a) two
overlapped images represented by the blue and green regions, respectively, with the overlap image
region marked in red and the center line marked in yellow; (b) the normalized alpha weighting fusion
map for two images where the brighter regions indicate higher values.

L̂k
A = L̂k

B = (Lk
A + Lk

B)/2. Based on these corrections, the intensity of any pixel in both A and B
will be adjusted linearly. For example, given a pixel p ∈ A whose intensity LA(p) will be linearly
corrected as:

L̂A(p) = L̂l
A + (LA(p)− Ll

A)
L̂u

A − L̂l
A

Lu
A − Ll

A
, (10)

where LA(p) ∈ [Lu
A, Ll

A], Lu
A and Ll

A denote the intensities of two matching points in A that are
closest to LA(p), and the L̂u

A and L̂l
A are the corresponding corrected intensities. In order to produce a

smooth and gradual transition from non-overlap regions to overlap ones, the alpha correction method
is conducted as:

L′A(p) = (1− α(p))LA(p) + α(p)L̂A(p), (11)

where L′A(p) denotes the finally fused intensity of the pixel p, LA(p) is the original intensity of400

the pixel p while L̂A(p) is the corrected intensity of the corresponding pixel based on the above401

mentioned correction method, and α(p) is a function that related to the distance between the pixel p402

and the center line of the overlap image region, which ranges between 0 and 1 as shown in Figure 8403

where the smaller the distance to the center line is, the larger the α is. All the pixels in another image404

will be processed in the same way.405

4 Image Mosaicking406

Although the large geometric misalignments and photometric inconsistencies have been greatly407

reduced through our proposed image warping and color correction algorithms,respectively, there408

always exist small geometric misalignments and color differences between adjacent images. To stitch409

the color corrected panoramic images into the single composite panorama, we also need to find the410

optimal seamlines in the overlap image regions between warped images to magnificently conceal the411

parallax. Furthermore, an efficient image blending algorithm will be further applied to eliminate the412

stitching artifacts caused by small color differences along the seamlines.413

4.1 Optimal Seamline Detection414

In this paper, the optimal seamlines between color corrected images will be efficiently extracted415

using the graph-cuts-based seamline detection algorithm presented in [19]. This novel algorithm is416

used to efficiently detect optimal seamlines for mosaicking street-view panoramic images without417

precisely common center in a two-label graph cuts energy minimization framework. This algorithm418
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magnificently fuses the information of image color, gradient, and texture complexity into the data419

and smooth energy terms in graph cuts to effectively ensure that the seamlines are optimally420

detected in the laterally continuous regions with high image similarity and low object dislocation421

to magnificently conceal the parallax between images. For multiple images, we apply the traditional422

frame-to-frame optimization strategy to efficiently find all optimal seamlines. The details of this strategy423

are described in Section 3.1 of [19]. The experimental results on a large set of images reported in [19]424

have demonstrated that this algorithm is capable of creating high-quality seamlines for multiple425

image mosaicking, while not crossing majority of visually obvious foreground objects and most of426

overlap regions with low image similarity to effectively conceal the image parallax at different extents.427

4.2 Image Blending428

Although the major color differences are eliminated between input images by applying our429

proposed color correction strategy presented in Section 3, there still exist the artifacts along the430

seamlines due to that the color differences can not be removed completely via color correction. Thus,431

a good image blending algorithm is needed to generate the last pleasant panorama. To quickly blend432

the color corrected images after detecting the optimal seamlines, the transition smoothing methods433

(also known as feathering [47] or alpha blending methods [48]) can be used to minimize the visibility434

of seamlines by smoothing the common overlapping regions of the combined images. However, to435

produce a more pleasant panorama, in this paper, we use the Laplacian pyramid blending [49] to436

stitch multiple color corrected images at one time.437

5 Experimental Results438

Extensive experiments on representative street-view panoramic images were conducted to439

comprehensively evaluate the performance of our proposed unified framework for street-view440

panorama stitching. In our paper, all used street-view panoramic images were captured from the441

real world scenes by an integrated multi-camera equipment with six Nikon D7100 cameras of 24442

million pixels with wide-angle lenses mounted on a mobile vehicle platform. Six camera images443

were aligned into a common spherical coordinate system with the image size of 12000× 6000 pixels.444

Due to that the projection centers of these six cameras are not precisely the same, there always445

exist large geometrical misalignments at different extents between the adjacently aligned images,446

especially in the image regions close to the camera centers. The overlap relationship of those six447

panoramic images is shown in Figure 9. Our algorithms in this paper were implemented with448

C++ under Windows and tested in a computer with an Intel Core i7-4770 at 3.4GHz and the 16GB449

RAM memory. Due to the limit of pages, more experimental results and analysis are presented at450

http://cvrs.whu.edu.cn/projects/PanoStitching/.451

5.1 Image Warping452

In this section, we conducted the experiments on two groups of panoramic images to prove453

the effectiveness and superiority of our proposed image warping algorithm described in Section 2.454

The panorama stitching results without and with the use of our proposed image warping algorithm455

in the first group of six panoramic images are shown in Figures 10(a) and (b), respectively. We456

can find that the whole seamlines in two panoramas cross the similar regions with the high image457

similarity. However, from the whole stitching results and especially the detailed local regions shown458

in Figures 10(a) and (b), we observed that the stitching artifacts caused by the geometric dislocation459

in the panorama, as shown in Figure 10(a), stitched without the use of image warping algorithm460

are more obvious than the panorama, as shown in Figure 10(b), stitched with its use. Noticeably,461

the stitching artifacts caused by geometric dislocation become smaller as expected when the image462

http://cvrs.whu.edu.cn/projects/PanoStitching/
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Figure 9. The image overlap regions of six geometrically aligned and warped images in the 360◦

street-view panoramic view where the black, the green and the red stand for the no-overlapped,
two-overlapped, multi-overlapped image regions, respectively.

warping algorithm was applied, as shown in Figure 10(b). While not using the image warping463

algorithm, the geometric dislocation is very large, as shown in Figure 10(a). For example, in the464

first enlarged local region, the seamline crossed the text without the used of image warping, and it465

avoided crossing the text when the image warping was used. In the second enlarged local region,466

although two seamlines crossed the road with pavement stairs, we can find that the dislocation467

is almost invisible in the pavement stairs when the image warping was used, but it is so obvious468

without the use of the image warping. In the aspect of computational cost, without the use of image469

warping, our algorithm took around 17.89s in the above experiment, only the elapsed time in six470

optimal seamlines detection is included. However, with its use, our algorithm took around 70.93s471

consisting of all the elapsed times in the image warping and the optimal seamline detection. From this472

comparison, we observed that the seamline detection is efficient, but the image warping is relatively473

time-consuming. This is mainly because that we need to find the inlier matches for all image pairs at474

first and then interpolate the dense optical flows by MBA for each image, which is time-consuming.475

But our proposed image warping algorithm can significantly improve the quality of the last stitched476

panorama.477

The comparative experimental results on another group of panoramic images are presented in478

Figures 10(c) and (d), respectively, and the similar conclusions can be drawn. The computational479

times of our algorithm without the use of image warping and with its use are 13.19s and 56.77s,480

respectively.481

From the above experimental results on two groups of panoramic images, we observed that482

our proposed image warping algorithm can effectively eliminate the stitching artifacts caused by the483

geometrical dislocations and can also slightly improve the quality of the found optimal seamlines to484

some extent.485

5.2 Color Correction and Image Blending486

In this section, we conducted the experiments in two group panoramic images to prove that our487

proposed color correction algorithm can magnificently reduce the large color differences between the488

warped images. In addition, we also presented the last panoramas generated by our proposed system489

and compared them with the open-source software Enblend 4 which are popularly used to generate490

the street-view panorama by stitching the registered panoramic images.491

4 Available at http://enblend.sourceforge.net/.

http://enblend.sourceforge.net/
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(a) (b)

(c) (d)

Figure 10. Visual comparison of the stitching results with the optimal seamlines in two groups of six
panoramic images when our proposed image warping algorithm was used (Right:(b) and (d)) or not
(Left: (a) and (c), namely, the stitching results of [19]). The red lines stand for the detected optimal
seamlines between images.

Figure 11 shows the experimental results on the first group of panoramic images. The panorama492

stitching results without and with the use of color correction are shown in Figures 11(a) and (b),493

respectively. From the whole stitching results and especially the detailed local regions shown in494

Figures 11(a) and (b), we can find that color differences between the warped images were significantly495

reduced and are almost invisible. In addition, the quality of the detected optimal seamlines was496

improved as expected when the color correction algorithm was used due to that the color differences497

were greatly reduced before the seamlines were found. For example, the seamline rounded the498

advertising board instead of crossing it when the color correction algorithm was used, as shown in499

the detailed image regions in Figures 11(a) and (b). In the aspect of computational cost, without the500

use of the color correction, our algorithm took around 18.01s to find all six optimal seamlines. With its501

use, our algorithm took around 33.52s to correct the color differences and find the optimal seamlines,502

means that the color correction algorithm took around 15.51s. To generate the last panorama, the503

Laplacian pyramid blending algorithm was further applied, whose generated result is shown in504

Figure 11(d). And in Figure 11(c), we also present the last panorama generated by Enblend. From505
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(a) (b)

(c) (d)

Figure 11. Visual comparison in the first group of six panoramic images: (a)-(b) the stitching results
with the optimal seamlines when the our proposed color correction was used (b) or not (a); (c)-(d) the
last panoramas generated by Enblend (c) and our proposed stitching system (d).

the visual comparison, we can observe that our proposed stitching system with image warping506

and color correction obviously outperforms Enblend. Noticeably, the stitching artifacts caused by507

geometric misalignments and photometric inconsistencies still exist in the panorama generated by508

Enblend, as shown in Figure 11(c) but they almost disappeared in our produced panorama, as shown509

in Figure 11(d). In the aspect of computational cost, the Laplacian pyramid blending algorithm took510

35.56s.511

The experimental results on another group of panoramic images are presented in Figure 12512

and the similar conclusion can be drawn. The large color differences were greatly reduced by our513

proposed color correction algorithm, especially in the regions of sky and the tall buildings, and514

the quality of the detected seamlines was slightly improved to some extent. The seamlines bypass515

the buildings and the white lane when the color differences were corrected for the warped images.516

Likewise, the stitching artifacts existed in the panorama produced by Enblend disappeared in the517

panorama generated by our proposed system. The elapsed times in color correction, optimal seamline518

detection and image blending are 17.33s, 13.77s, and 35.61s, respectively.519
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(a) (b)

(c) (d)

Figure 12. Visual comparison in the second group of six panoramic images: (a)-(b) the stitching results
with the optimal seamlines when the our proposed color correction was used (b) or not (a); (c)-(d) the
last panoramas generated by Enblend (c) and our proposed stitching system (d).

5.3 Image Stitching520

To illustrate the effectiveness of our proposed framework for street-view panorama stitching,521

we presented the last panoramas stitched by different combination of optimal seamline detection522

(S), image warping (W), color correction (C) and image blending (B) algorithms in Figure 13. At523

first, Figure 13(a) shows the panorama generated by the optimal seamline detection algorithm524

presented by [19], from which we can find that there are many stitching artifacts caused by geometric525

misalignments and photometric inconsistencies in the last stitching image, especially obvious in526

the detailed local regions. For example, the white lanes on the road were broken due to the527

large geometric dislocations. In addition, there also exist large color differences along the optimal528

seamlines. Our proposed image warping and color correction algorithm can eliminate large geometric529

misalignments and photometric inconsistencies, as shown in Figures 13(b) and (c), respectively. The530

last blended panorama generated by our proposed system is shown in Figure 13(d) from which we531

can observe that the last stitched panoramic image is pleasant and high-quality, which can meet the532

application requirement of the street-view map.533
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(a) (b)

(c) (d)

Figure 13. The stitching results with different combination of optimal seamline detection (S), image
warping (W), color correction (C) and image blending (B) algorithms: (a) S (the result generated
by [19]); (b) W + S; (c) W + C + S; (d) W + C + S + B. The computational times of (a)-(d) are 18.00s,
69.08s, 86.63s and 123.68s, respectively.

5.4 Comparative Results534

At last, to prove that our approach is superior and can generate high-quality panoramas,535

we compared our proposed approach with the Xiong and Pulli’s approach [42]. We used two536

representative groups of panoramic images for visual comparison. The color differences in the first537

group of images are relatively small but large in the second group. Because the Xiong and Pulli’s538

approach has not eliminated the influence of large geometric misalignments between aligned images,539

so we used the warped images generated by our image warping algorithm as the input ones for540

comparing two approaches. In addition, their approach applied the Poisson blending algorithm541

to generate the last blended image, however, our approach used the Laplacian pyramid blending542

algorithm. To evaluate the last blended panoramas generated by two approaches fairer, we replaced543

the Poisson blending algorithm in the tested Xiong and Pulli’s approach with the Laplacian pyramid544

blending algorithm.545
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Figure 14 shows the stitching results of the first group of images with relatively small color546

differences. Figures 14(a) and (b) illustrate the stitching results just with the detected seamlines of the547

Xiong and Pulli’s approach and our approach without the use of color correction, respectively. From548

these two figures, we can observe that the seamlines detected by our approach are better than those549

detected by their approach. For example, the seamlines detected by their approach crossed the tall550

building, but our approach avoided crossing it. Figures 14(c) and (d) illustrate the stitching results of551

two approaches with the use of color correction, respectively, from which we observed that both of552

two approaches can eliminate the small color differences effectively. Figures 14(e) and (f) show the553

last blended panoramas generated by two approaches, respectively, from which we found that there is554

some petty ghost on the top of the tallest building in the second enlarged region shown in Figure 14(e),555

which disappeared in the panorama generated by our approach, as shown in Figure 14(f). This556

is mainly because the horizontal seamline between bottom and top input images detected by the557

Xiong and Pulli’s approach is close to this building, as shown in Figure 14(c). In conclusion, if the558

color differences between input images are small, both of two approaches can generate high-quality559

panoramas.560

Figure 15 shows the stitching results of the second group of images with very large color561

differences. Figures 14(a) and (b) show the stitching results of the Xiong and Pulli’s approach and our562

approach without the use of color correction, respectively, from which we observed that our approach563

also generated more high-quality seamlines than their approach. Figures 14(c) and (d) present the564

stitching results of two approaches with the use of color correction, respectively. From the visual565

comparison, we observed that our proposed color correction algorithm obviously outperformed than566

the algorithm presented in [42], especially obvious in two locally enlarged regions. For example,567

in the first enlarged region (from left to right), the detected seamline divides the building into two568

parts, one comes from the top input image which is dark, and another comes from the bottom input569

image which is relatively lighter. After color correction, the top image is also very dark in the result570

generated by the Xiong and Pulli’s approach and the color differences along the seamline are also571

very large. In addition, due to that the top image is too dark, many detailed informations cannot572

be pleasantly observed. But, in our result, the color of the top image is similar with the bottom one,573

and more detailed informations of this region can be clearly observed. Figures 14(e) and (f) show the574

last blended panoramas generated by two approaches, respectively. In the second enlarged region575

of Figure 15(e), we found that there are some very obvious ghosts on the top of the building, which576

disappeared in the panorama generated by our approach, as shown in Figure 15(f). In addition, in577

Figure 15(e), the color of top sky regions almost is white, which is not pleasant. However, in the578

last panorama generated by our approach, the color of those regions is slightly bluish, which is more579

reasonable and pleasant, as shown in Figure 15(f). In conclusion, if the color differences between input580

images are large, our approach can also generate high-quality panoramas, but the results generated581

by the Xiong and Pulli’s approach are not so good.582

In the aspect of computational times of two approaches, the average times on two groups of583

images are presented in Table 1, from which we can find that our approach is a litter bit more584

time-consuming than their approach. This is mainly because their approach applied dynamic585

programming to detect the optimal seamlines but we used graph cuts, which is more time-consuming586

than dynamic programming. We also observed that the computation times of our proposed color587

correction algorithm and their algorithm are 16.83s and 16.08s, respectively, which are almost the588

same. But our color correction algorithm is more effective than their algorithm.589

6 Conclusion590

In this paper, we proposed a unified framework for street-view panorama stitching system which591

is comprised of image warping, color correction, optimal seamline detection and image blending592

for stitching or mosaicking a set of geometrically aligned street-view panoramic images with large593
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Table 1. The computational times of our proposed approach and the approach proposed in [42].

Optimal Seamline Detection Color Correction Image Blending #Total
Our Proposed

ãĂĂApproach (s) 16.92 16.83 36.60 70.36

Xiong and Pulli’s
Appproach (s) 13.77 16.08 36.72 66.5815

geometric misalignments and photometric inconsistencies into a visual-appealing and informative594

wide-angle composite image. The contributions in this paper are summarized as follows:595

• We creatively proposed a novel image warping method based on the dense optical flows596

to greatly reduce the large geometric misalignment existed in the input images as much as597

possible. Experimental results have demonstrated the superiority of our proposed image598

warping method, which can efficiently and greatly eliminate the influence of the large geometric599

misalignment.600

• We proposed a novel color correction and image blending method to further reduce the601

color differences between panoramic images based on extreme point matching of histograms602

of the overlapped image regions of two involved images via both probability density603

functions and cumulative distribution functions. Experimental results on representative604

street-view panoramic images have proved that our proposed color correction method is605

capable of eliminating the large color differences between adjacent images captured in different606

illumination conditions and/or different exposure settings, which obviously outperforms the607

open-source software Enblend and the approach proposed by [42].608

• We proposed a unified framework for street-view panorama stitching system. Even thought609

there are large geometrical misalignments and photometric inconsistencies in the input aligned610

images, our system can also generate pleasant and high-quality panoramas.611

Nevertheless, the proposed system may be improved in the future in the following ways. First,612

when detecting the optimal seamlines, the superpixel segmentation can be introduced to greatly613

improve the optimization efficiency by decreasing the number of elements in graph cuts, and the614

scene understanding or parsing can also be applied in some particular image data. For example, the615

roads can be detected out for guiding the seamlines. Second, the whole image mosaicking method616

can be improved to handle more different types of images, not only street-view panoramic ones, but617

also aerial and oblique ones. At last, the parallel optimization strategy is expected to be developed to618

more efficiently generate the last panorama.619
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