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Abstract—In this paper, we develop the Helmholtz principle on the gradient magnitude map of an image in the view of probability
theory and apply it on the detection of edge chains and line segments. The traditional Helmholtz principle needs a good estimation of
the number of different possible configurations for an event to calculate the “number of false alarms” (NFA) of this event, which is
difficult in some applications. To overcome this shortage, we propose to use the “relative number of false alarms” (RNFA) instead of the
traditional NFA to validate an event. Based on this observation, a simple and efficient edge chain detection algorithm is proposed,
which detects edge chains via edge pixel growing first and then validates the edge chains according to their RNFAs. In this way, not
only edge chains that are weak in contrast but meaningful in vision can be detected, but also the false alarms ratio is controlled in a low
level. Extending this observation onto the line segment detection, we propose a novel line segment detector which fits for straight line
segments directly on the gradient magnitude map instead of the edge chains which often suffer from the influence of noise. To evaluate
the proposed edge chain and line segment detectors in quantity, both an edge chain detection benchmark with 25 semi-automatically
labeled images and a line segment detection benchmark with 30 images were built. The proposed edge chain and line segment
detectors were tested in these two benchmarks as well as some widely used datasets. The experimental results on these benchmarks
sufficiently demonstrate that the proposed edge chain and line segment detectors outperform the state-of-the-art methods.

Index Terms—Helmholtz Principle, Edge Chain Detector, Line Segment Detector, Edge Chain Detection Benchmark, Line Segment
Detection Benchmark.
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1 INTRODUCTION

G EOMETRIC structure detection on an image is an im-
portant and classical problem in image processing and

computer vision, which has been studied for decades. Edge
chains and line segments are two most widely used kinds
of geometric structures, which can be used to represent the
silhouettes of an image. As a low level information of an im-
age, edge chains can be applied in line segment detection [1],
[2], object recognition [3] and image segmentation [4]. Be-
sides, line segments can be used as low-level features to
assist to solve some problems such as stereo matching [5],
[6], indoor scene layout recovering [7], simultaneous local-
ization and mapping (SLAM) [8], road extraction [9], crack
detection in materials, image compression, and so on.

Based on the understanding that “edge is most often
defined as an abrupt change in some low-level image feature
such as brightness or color” [10], traditional edge detectors
usually take two steps to extract edge segments: feature
image extraction and feature image thresholding. Numerous
edge detectors have been proposed in the past decades [11]–
[14] based on this idea. The Canny operator [11] is a
widely used edge detector which finds the peak gradient
magnitudes orthogonal to the edge directions by applying
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a non-maximum suppression. However, it uses the gradient
magnitudes as information, which makes it difficult to dis-
tinguish the faint edge pixels from the noise. Wang et al. [15]
proposed the “supporting range” to distinguish those weak
edge pixels from their surroundings and applied a segment-
based hysteresis thresholding approach to verify the edge
segments, which was tested to be very useful. Edge Drawing
is a recently proposed edge detector which “computes a
set of anchor edge points in an image and then links these
anchor points by drawing edges between them” [16]. Edge
Drawing is fast and uses more direction information than
Canny on its novel edge linking process. In the work of [17],
the use of the Helmholtz principle gives a new view on
both boundary and edge detections. However, this work
mainly focuses on the geometric event that: a strong contrast
along a level line of an image, thus to some extent it can
not be considered as a proper edge detector. “Conversely,
the detection algorithm provides a check tool to accept or
reject edges proposed by any other algorithm” [17]. In the
work of EDPF [18], the original work of Edge Drawing was
developed into a parameter-free edge detector by applying
the Helmholtz principle on the validation check of the
detected edge chains.

As to line segment detection methods, in general
they can be divided into two categories: gradient-
orientation-based and gradient-magnitude-based. The
gradient-orientation-based methods only depend on the
gradient orientations [19]. In the recently proposed line
segment detector LSD [20], a line segment is defined as a
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straight image region whose points share roughly the same
image gradient orientation, and the detected line segments
are validated according to the Helmholtz principle. The
gradient-magnitude-based methods first apply an edge
detector to extract the edge map from the input image and
then detect line segments based on the extracted edge map.
Hough transform (HT) [21] is a traditional line detector
based on an edge map but it usually extracts infinitely long
lines instead of line segments and easily cause many false
detections in richly-textured regions with strong edges.
Recently, Akinlar and Topal [1] proposed a robust and
efficient line segment detector, named as EDLines, to extract
line segments from edge segments, which consists of three
main steps: 1) extracting the edge segments by the Edge
Drawing (ED) algorithm [16]; 2) extracting line segments
from the edge segments based on the least-square line
fitting method; 3) eliminating false line segments according
to the Helmholtz principle.

The Helmholtz principle is popularly applied in the
detection of image structures like line segments [1], [20],
[22], edges and boundaries [17], [18], continuous curves [23]
and vanishing points [24]. The Helmholtz principle does not
use an a priori or learned model, but applies the a contrario
uniform random assumption. The a contrario assumption is
based on a certain background model. For example, in the
line segment detection [20], the background model is the
image’s gradient orientation map, and the assumption is
that the gradient orientations of pixels are independent and
uniformly distributed in the range (−π, π] on the gradient
orientation map. The LSD detector [20] first applies a region
growing method to obtain a line-support region, and then
a rectangle is fitted as an approximation of the region,
finally the Helmholtz principle is applied to validate the
meaningfulness of this region by calculating the “number of
false alarms” (NFA) of this region according to the number
of aligned orientations in it. In the edge and boundary
detection work of [17], the background model is the level
lines of an image, and the assumption is that the contrast
(gradient magnitude) at a point on any level line is mutually
independent.

Despite that the Helmholtz principle is well studied
and applied in both the gradient orientation map and the
level lines, its application on the gradient magnitude map
is still not well discussed yet. The main reason is that
the value of Nconf [25], which is one of the key factors
to calculate the value of NFA, is hard to be determined
for the application like the edge chain detection. In this
contribution, we first develop the Helmholtz principle on
the gradient magnitude map of an image in the view of
probability theory, and propose to use the “relative number
of false alarms” (RNFA) instead of the traditional NFA to
validate an event. Both an edge chain detector and a line
segment detector are proposed, which detect edge chains
and line segments directly on the gradient magnitude map,
respectively. To evaluate the proposed edge chain and line
segment detectors in quantity, we also built both an edge
chain detection benchmark with 25 labeled images and a
line segment detection benchmark with 30 labeled images.

The remainder of this paper is organized as follows. The
proposed Helmholtz principle on the gradient magnitude
map for validating edge chains and line segments is in-

(a) randomly distributed (b) a rectangle structure
Fig. 1. Example images with the size of 100 × 100 pixels: (a) 1000
independent black pixels randomly distributed on the image; (b) an
image with a 4× 5 black rectangle structure.

troduced in Section 2. A simple and efficient edge chain
detector is described in Section 3. A line segment detector
based on the gradient magnitude map instead of the edge
chains is proposed in Section 4. Experimental results on
our built benchmarks as well as other two widely used
databases used to evaluate our proposed edge chain and
line segment detectors are presented in Section 5 followed
by the conclusions drawn in Section 6.

2 HELMHOLTZ PRINCIPLE ON GRADIENT MAGNI-
TUDE MAP

2.1 Helmholtz Principle

Fig. 1 shows two 100 × 100 simulated images with 1000
black pixels distributed on each of them. In the image
shown in Fig. 1(a) all the black pixels are randomly
distributed, which means that the probability of a pixel
to be black is 1000/(100 × 100) = 1/10, while in that of
Fig. 1(b), there is a 4×5 black rectangle structure, the resting
980 black pixels are also randomly distributed, thus the
probability of a pixel on Fig. 1(b) to be black is approximate
to 1/10. Comparing to the image shown in Fig. 1(a), we
will sense that such a rectangle structure shown in Fig. 1(b)
could not be arose just by chance. But how to measure this
sense in quantity? The computational Gestalt theory and
Helmholtz principle [17], [25] give a systematic solution.
Before we have a deep look in the Helmholtz principle on
the detection of image structures, some basic concepts are
introduced as follows:

• event: a geometric structure on an image, for example
the black rectangle shown in Fig. 1(b).

• object: the basic element to form an event, for example
the pixels in the black rectangle shown in Fig. 1(b).

• quality: a common character that is shared by all the
objects of an event, for example the quality that all
the pixels in the black rectangle shown in Fig. 1(b)
are all “in black”.

In the Helmholtz principle, the sense “a structure could
not arise just by chance” is defined as the expectation of the
number of occurrences of this structure (event) under the a
contrario uniform random assumption, which is also known
as the “number of false alarms” (NFA). According to the
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(a) gray image (b) gradient orientation map
Fig. 2. An example of the gradient orientation map and the aligned pixels
of a line segment on a 50× 50 gray image.

Helmholtz principle, an event is meaningful if the NFA of
this event is very small. The NFA is formulated as follows:

NFA = Nconf × B(n, k, p), (1)

where Nconf denotes the number of different possible con-
figurations one could have for the searched event, which
means that there probably are Nconf events in theory on the
image, p represents the probability that a given object has a

considered quality, and B(n, k, p) =
∑n

i=k

(
n

k

)
pi(1− p)n−i

is the tail of the binomial distribution which means the
probability that at least k objects out of the observed n ones
have this quality under the independence assumption.

As a summary, there are three key factors in the
Helmholtz principle: (1) the perspective meaningful event;
(2) the theoretical number Nconf of the event on the image;
(3) the probability p of the considered quality. Take the
two images in Fig. 1 for example, in Fig. 1(a) there is no
perspective meaningful structure (event) observed, while
in Fig. 1(b) the black rectangle is sensed as a meaningful
structure. Assume that we have already obtained the black
rectangle on the image shown in Fig. 1(b) by some detection
methods, the rest of the problem is how to calculate the
Nconf and B(n, k, p). In the case of the black rectangle, the
event now is “a square made up of black pixels”, the object
is “pixel” and the quality is “pixel in black”. The definition
of an event gives the estimation of Nconf, considering the
fact that a rectangle is determined by the left-top and
right-bottom vertexes, each vertex can be any pixel on the
100 × 100 image region, thus an approximation of Nconf is
(100 × 100)2. The probability of a 4 × 5 black rectangle is
B(20, 20, 1

10 ) = ( 1
10 )

20, thus the NFA of the black rectangle
is (100 × 100)2 × ( 1

10 )
20 = 10−12, which is a really small

value and means that this square can hardly occur in a
background model where the black pixels are randomly
and independently distributed with a probability of 1/10,
so according to the Helmholtz principle the 4 × 5 black
rectangle on the image shown in Fig. 1(b) is perspective
meaningful.

2.2 Helmholtz Principle on Orientation Map and Level
Lines
The gradient orientation of a pixel is distributed in the
range (−π, π] and the pixels on a line segment share a close
orientation. Such properties make it very straight forward
to apply the Helmholtz principle on line segment detection

Fig. 3. An example of level lines on the Lena image with the level step
of 20 where different colors of contours stand for different level values.

from the gradient orientation map. In the LSD line segment
detector [20], a line segment is defined as a straight image
region whose points share roughly the same gradient orien-
tation, so the event now is “a straight image region whose
pixels are aligned with it” and the quality is “a pixel is
aligned with the straight region”. Given an angle tolerance
pπ, the probability that a pixel in the support range of a
line is aligned with this line is p. Considering the fact that a
straight region is determined by two terminal points and its
width, there are w × h possible positions for each terminal
point and (w×h)0.5 possible values for the width of the line
segment, so the Nconf of this event is (w×h)2.5, where w×h
is the size of the image. Thus, for a straight region with n
pixels, among which k ones are aligned with this region,
the NFA of this straight region is: (w × h)2.5 × B(n, k, p).
Fig. 2 shows an orientation gradient magnitude map of a
50 × 50 image, the straight region marked in rectangle on
Fig. 2(b) contains 100 aligned pixels. According to LSD, the
angle tolerance is π/8, so the NFA of the red straight region
is (50× 50)2.5 × B(100, 100, 1/8) ≈ 1.5× 10−82, which is a
quite small value, thus we can assert that a very meaningful
line segment is found.

As to apply the Helmholtz principle on edge chain
detection, the first problem we encounter is the definition of
an edge chain event, because an edge chain can be anywhere
with any shape and any length on the image, which makes
it difficult to be expressed in a certain model. To solve this
problem, in the work of [17] the “level line”, as Fig. 3
shows, was introduced, and an edge chain is defined as “a
piece of level line along which the contrast of the image is
strong”. Considering the fact that it needs two terminals to
determine an edge chain, so for a level line Ei with a length
of li there are totally li(li − 1)/2 possible edge chains on Ei,
thus the Nconf of the edge chain event on an image can be
formulated as:

Nconf =
∑
i

li(li − 1)/2, (2)

where li is the pixel number of the i-th level line. The
considered quality now is “each pixel of a level line E has a
contrast equal or greater than u”, and the probability of this
quality is formulated as:

H(u) =
1

M
#{x ∈ I|g(x) ≥ u}, (3)
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(a) gray image (b) gradient magnitude map
Fig. 4. A 50 × 50 binary image with only one line segment and the
corresponding gradient magnitude map.

where I is the image, g(x) denotes the contrast (gradient
magnitude) of a pixel x and M is the number of pixels
whose gradient magnitudes are not equal to zero on the
image, i.e., M = #{x ∈ I|g(x) ̸= 0}. So to apply the
Helmholtz principle on the edge chain detection based on
the level lines, first of all we should get the level lines of
the image, then for an edge chain with l pixels, the smallest
gradient magnitude u on this chain is found, and finally the
NFA of this edge chain is defined as Nconf ×H(u)l.

We can see that applying the Helmholtz principle on the
edge chain detection is not a straight forward work because
the level lines should be obtained in advance. In the work
of EDPF [18], the level lines are replaced with edge chains
obtained by the Edge Drawing method for convenience
without convincing proofs. In fact, both the level lines based
and the edge chains based Nconfs are just approximations
of the exact value of Nconf, and it is still difficult to find a
convincing method to calculate the value of Nconf for the
edge chain event.

2.3 Helmholtz Principle on Gradient Magnitude Map

Let I be w × h image and G be the gradient magnitude
map of I by applying a gradient operator on I. In our entire
work the 3×3 Sobel operator was applied, and the gradient
magnitude g(p) of a pixel p in I is calculated as follows:

g(p) =
√

(gx(p))2 + (gy(p))2, (4)

where gx(p) and gy(p) represent the gradients of the pixel
p in I in the horizontal and vertical directions, respectively.

For each integral gradient magnitude level u ∈ [1, gmax]
where gmax is the maximum gradient magnitude level in
G, the number of pixels whose gradient magnitude level
is equal or greater than u is denoted as k(u), thus the
probability of the considered quality that “a pixel on I
whose gradient magnitude level is equal or greater than u”
is defined as:

P (u) = k(u)/M, (5)

where M = w × h is the size of I. This definition is
similar to that of Eq. (3) in form, but different in one of
the basic conceptions of the Helmholtz principle. As we
have stated before, the quality is a common character that
is shared by all the objects of an event, and the probability
of the quality represents the distribution of the background
model. By setting M as the number of pixels whose gradient
magnitudes are greater than zero on the image, Eq. (3)

implies that the background model is the level lines of an
image, while Eq. (5) means that the objects with this quality
is distributed randomly on the whole gradient magnitude
map. Fig. 4(a) shows a 50 × 50 binary gray image with
one line segment being the boundary between the light and
black half regions and Fig. 4(b) illustrates the corresponding
gradient magnitude map with only two values {0, 200}.
According to Eq. (3), the probability H(200) = 1, so the
NFA of the line segment is greater than 1 and thus there
is no meaningful line segment on the image. While by the
definition of Eq. (5), the probability P (200) = 1/50 and thus
the line segment is a very meaningful event.

Fig. 5 shows two edge chains marked in rectangular
frames on Fig. 5(a). The weak one shown in Fig. 5(b) has a
minimum gradient magnitude u = 24 and P (u) = 0.43, and
thus its background is dense but we can still distinguish the
edge chain from the background, which means that the edge
chain is meaningful. The strong one shown in Fig. 5(c) has a
minimum gradient magnitude u = 360 and P (u) = 0.003,
and so its background is much sparser and obviously it is a
meaningful edge chain.

Definition of NFA - Number of False Alarms. Given an
event E (a detected structure) made up of l pixels on an
image, Nconf is the theoretical number of E on the image, u
is the minimal gradient magnitude of these pixels, the NFA
of E on the gradient magnitude map is defined as:

NFA = Nconf × P (u)l. (6)

In some applications, it is difficult to give a good ap-
proximation of the Nconf, for example the value of Nconf
for edge chain is hard to be obtained as we have discussed
in Section 2.2. In this case, we propose to use the “relative
number of false alarms” (RNFA) to validate edge chains.

Definition of RNFA - Relative Number of False Alarms.
Given an event E (a detected structure) whose binomial
probability is B(n, k, p), and Er is a minimal meaningful
event (MME) whose binomial probability is B(nr, kr, pr).
The relative number of false alarms of E to Er is defined as:

RNFA =
Nconf × B(n, k, p)

Nconf × B(nr, kr, pr)
=
B(n, k, p)
B(nr, kr, pr)

, (7)

where Nconf is the number of different possible configu-
rations one could have for the searched event, and we
simply say that the event is meaningful than the minimal
meaningful event (MME) if RNFA < 1. As we can see from
Eq. (7) that, all configurations of a given type of event on
the image share the same value of Nconf, which means that
the exact value of Nconf can be eliminated if a reference case
can be found. In this way, the problem of finding a good
approximation of Nconf is converted into the searching for
the minimal meaningful event (MME), which can be very
simple in some cases.

3 EDGE CHAIN DETECTION

3.1 Edge Chain Validation
We consider using the proposed RNFA to validate the mean-
ingfulness of the edge chains. In many cases, it is difficult to
find a MME reference case, but in the application of the
edge chain detection, it works. The basic idea is that “a
meaningful line segment on the image is also a meaningful
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(a) gray image (b) u = 24, P (u) = 0.43 (c) u = 360, P (u) = 0.003

Fig. 5. Two examples of edge chain structures on gradient magnitude maps with two different values of u.

edge chain”. So, given a w×h image I, first of all we should
get the minimum length Lmm of a meaningful line segment,
which can be very well solved according to the works of
LSD [20] and CannyLines [22]:

Lmm = −2.5 log(M)/ log(p), (8)

where M = w×h is the size of I and p = 1/8. Thus, we can
give the definition of the “minimal meaningful edge chain
event” of an image:

Definition of MMEedge - Minimal Meaningful Edge Chain
Event. A minimal meaningful edge chain event is defined as
the edge chain with a size of Lmm and a minimal gradient
magnitude equal to gmin.

The gmin is a user defined parameter which is set as a
constant, in Section 5.1.2 we will demonstrate how to find
the best value of gmin for all the applications. Thus the RNFA
of an edge chain can be reformed as follows:

RNFAedge =
B(n, k, p)

P (gmin)Lmm
. (9)

If RNFAedge < 1, we simply say that the edge chain is
meaningful.

3.2 Edge Chain Detector

An edge chain should have the following qualities on a
gradient magnitude map: (1) made up of edge pixels (zero-
crossing pixels [11]); (2) smooth orientation deviations be-
tween consecutive edge pixels. Based on these observations,
an efficient edge chain detector is proposed as follows:

(1) First, given a gray image I, a 3×3 Gaussian filter with
the standard deviation σ = 1 is applied to suppress noise
and smooth out the image, then the gradient magnitude
map G and gradient orientation map O of I are calculated
by applying a certain gradient operator (a 3 × 3 Sobel was
applied in our work).

(2) Then, the non-maximum suppression procedure is
applied on G, the gradient magnitudes of those suppressed
pixels are set zero and the remaining ones are collected as
edge pixels, the set of which is denoted as E.

(3) Third, the set E is roughly sorted in descending order
according to the gradient magnitudes. The foremost unpro-
cessed edge pixel in E is selected as the initial seed pixel
pseed. The 8-neighborhood of the pseed is searched, if there
exists a 8-neighbor who is an unprocessed edge pixel, we
consider this pixel to be the next seed pixel, then we add it

into the current edge chain and begin 8-neighbor searching
from this newly added pixel. On each step, the gradient
orientation deviation between pseed and the newly added
edge pixel is calculated. The seed growing of the current
edge chain is conducted iteratively until all the pixels in
this chain is processed or there exist two consecutive steps
where the orientation deviations are both greater than θ,
which means that there is no more smooth edge chains exist
in front, then we add the current edge chain into the edge
chain set C and begin with another edge chain from the rest
of E.

(4) Each edge chain detected in the step (3) is validated
by the Helmholtz principle on edge chain proposed in
Section 3.1 to get rid of the false alarms. The same strategy
as that of EDPF is applied, that is: if the RNFA of an edge
chain C is larger than 1, i.e., RNFA > 1, the pixel p is the
one with the minimum gradient magnitude in C, then C is
divided into two sub edge chains C1 and C2 at p, then C1

and C2 are added into C and validated later.
Algorithm 1 describes the complete procedure in details

of the proposed edge chain detector. It’s worth noting that
there are two internal parameters in the proposed edge
chain detector: θ and gmin. The value of θ is set as π/8 for
constant, so the performance of the proposed algorithm can
be adjusted by setting a customized gmin, and the bigger the
value of gmin is the more meaningful the final edge chains
are. In Section 5.1.2 we will demonstrate how to find the
best value of gmin for all the applications.

Algorithm 1 Our Proposed Edge Chain Detector
Require: The gray image I.
Ensure: The set of meaningful edge chains C.

1: [G,O]← GetImageInfo(I)
2: E← NonMaximumSuppression(G)
3: C ← EdgeChainCollection(G,E, θ)
4: C ← EdgeChainValidation(C, gmin)

4 LINE SEGMENT DETECTION

4.1 Line Segment Validation

It is much easier to apply the NFA on validation of line
segments than on validation of edge chains, because the
value of Nconf of the line segment event on the gradient
magnitude map is the same as that on the gradient orienta-
tion map. Thus, assume that there is a line segment made up



SUBMITTED TO IEEE TRANSACTIONS ON IMAGE PROCESSING, MAY 2016 6

(a) Golfcart (b) Brush (c) Grater (d) Picnic Basket (e) Elephant (f) Videocamera
Fig. 6. Six representative images and the corresponding ground truth edge chains on the proposed benchmark.

of l pixels, the minimal gradient magnitude of these pixels
is u, the NFA of this line segment is:

NFA = M2.5 × P (u)l, (10)

where M = w × h is the size of the image. If NFA < 1, we
simply say that the event is meaningful.

It’s worth noting that we can also apply the RNFA on
the line segment validation if a minimal meaningful line
segment event is given. The choice of applying NFA or RN-
FA depends on the estimation of Nconf. If we can’t give out a
convincing estimation of Nconf, like that of the edge chain
detection, we can pick out a minimal meaningful event
(MME) and apply RNFA for the Helmholtz principle. In fact,
both Nconf and MME are representations of the background
model. We recommend to apply both NFA and RNFA to
double check the line segments, in this way the performance
of the validation procedure can be adjusted by setting a
customized gmin. In Section 5.2.2 we will demonstrate the
difference between the NFA, RNFA and NFA+RNFA based
methods.

4.2 Line Segment Detector

A line segment should have the following qualities on a
gradient magnitude map: (1) made up of edge pixels; (2)
those edge pixels should roughly on a straight line. Based
on this observation, a new line segment detector is proposed
which detects line segments directly on the gradient magni-
tude map instead of the edge chains as the EDLines [1] and
CannyLines [22]. The first two steps are the same as those
of the edge chain detector proposed in Section 3.2 and the
resting steps are described as follows:

(1) First, the set E is roughly sorted in descending
order according to the gradient magnitudes. The foremost
unprocessed edge pixel in E is selected as the initial seed
pixel pseed, and the tangent line l of pseed (passing pseed

and orthogonal to the gradient orientation of pseed) is set as
the initial line segment. Then the 8-neighborhood of pseed is
searched and any edge pixel in the 8-neighborhood whose
orthogonal distance to l is less than 2.0 is collected as the
“support edge pixels”. All the collected support edge pixels
are as a set Eline. The growing procedure of the current line
segment is conducted iteratively until all the pixels in Eline

TABLE 1
Comparison between Level Lines, Edge Chain and RNFA.

Level Lines [17] Edge Chain [18] RNFA
Measurements R P F R P F R P F

Our Benchmark 0.90 0.60 0.71 0.92 0.53 0.66 0.82 0.75 0.77

are processed, and then we begin with another line segment
from the rest of E. To efficiently fit the line segment in the
growing procedure, we adopt the following simple strategy.
Whenever the number of newly added support edge pixels
is greater than 1/5 of the size of Eline, the tangent line l is
updated by applying the least square fitting on Eline.

(2) Each line segment detected in the above step is vali-
dated by the Helmholtz principle on line segment proposed
in Section 4.1. The same validation strategy is applied as
that in Section 3.2.

Algorithm 2 describes the complete procedure in details
of the proposed line segment detector.

Algorithm 2 Our Proposed Line Segment Detector
Require: The gray image I.
Ensure: The set of meaningful line segments L.

1: [G,O]← GetImageInfo(I)
2: E← NonMaximumSuppression(G)
3: L ← LineSegmentCollection(G,E)
4: L ← LineSegmentValidation(L)

5 EXPERIMENTAL RESULTS

In this section, we built two benchmarks for comprehen-
sively evaluating our proposed edge chain and line seg-
ment detectors, respectively. In addition, other two widely
used databases were also used to verify that our pro-
posed detectors outperform the state-of-the-art method-
s. Our built benchmarks, more experimental results and
source codes of our proposed methods are publicly available
at http://cvrs.whu.edu.cn/projects/RNFA/.

5.1 Evaluation on Edge Chain Detector
5.1.1 Edge Chain Benchmark
To evaluate the performance of the proposed edge chain
detector, we built a benchmark with ground truth edge
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TABLE 2
Comparison of CannyPF, ED, SREdge, EDPF and RNFA on the proposed edge chain benchmark and the RUG dataset.

CannyPF [22] ED [16] SREdge [15] EDPF [18] RNFA
Measurements R P F R P F R P F R P F R P F

Our Benchmark 0.88 0.49 0.59 0.83 0.55 0.62 0.79 0.61 0.65 0.81 0.65 0.71 0.82 0.75 0.77
RUG Dataset 0.82 0.16 0.26 0.83 0.19 0.29 0.81 0.23 0.35 0.72 0.26 0.37 0.60 0.44 0.49

chains labeled in a semi-automatic way. The reason why
we don’t directly use two widely used public datasets: the
BSDS dataset 1 [26] and the RUG dataset 2 [27] is that the
BSDS dataset focuses mainly on the boundaries of objects,
while the RUG dataset concentrates on the edges of objects
on the textured background. Both of these two datasets are
more or less based on objects instead of edge chains, on the
contrary, the proposed benchmark is a specific edge chain
benchmark. Considering the fact that there are similarities
between object boundaries and edge chains, in this work
we still tested the proposed edge chain detector on both
BSDS and RUG datasets to demonstrate the performance
of the proposed algorithm as an object boundary detection
method.

The edge chain labeling is much more difficult than the
object boundary labeling, because there usually exists mass
and faint edge chains within an object, which are difficult
to distinguish directly on the gray-level image in vision. In
order to solve this problem, we developed a software to
track the edge chains on the edge map in a semi-automatic
way. First, the gray-level image was converted into a binary
map by applying the non-maximum suppression, and those
pixels whose gradient magnitudes are less than 5.0 were
discarded to decrease the influence of noise. Then, an expe-
rienced subject was asked to pick out a single point on each
edge chain which is “meaningful” in vision on the binary
map, and then an edge tracking procedure was executed
automatically to extract the edge chain from the binary map
starting based on the picked point. Also, the subject was
asked to draw a polyline by hand to fit for an edge chain
if this chain was not automatically extracted well, and then
the edge pixels were collected around the polyline to fit for
an edge chain.

There are 25 labeled images in our benchmark, most
of which were selected from the EDC dataset 3 [28], [29]
despite of several natural images that are too difficult for
human to label. The images cover a range of textured and
non-textured man-made and natural scenes. Fig. 6 shows six
representative images and the corresponding labeled edge
chains.

To evaluate the accuracy of the edge chain detection
result, we use the same F -score metric as EDPF [18]. Let
DC be the set of edge pixels detected by a certain method,
GT denotes that of the ground truth data, the precision (P)
and recall ratio (R) are defined as follows:

P =
#{DC ∩ GT}

#{GT}
and R =

#{DC ∩ GT}
#{DC}

. (11)

The F -score is defined as F = 2PR/(P +R).

1. Available at https://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/
2. Available at http://www.cs.rug.nl/∼imaging/databases/contour

database/contour database.html
3. Available at http://marathon.csee.usf.edu/edge/edge

detection.html
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Fig. 7. Different performances of our proposed edge chain detection
algorithm with different values of gmin on the proposed benchmark and
the RUG dataset.
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Fig. 9. PR curve of the five tested algorithms on the BSDS dataset.

5.1.2 Choice of Best gmin

As an edge chain detector, we consider to detect as many
meaningful edge chains as possible. In this condition, we
should find the value of gmin corresponding to the minimal
meaningful edge chain event. To find out the best value of
gmin for edge chain detection, we tested the proposed edge
chain detector on our edge chain benchmark with gmin=
40, 60, 80, 100, 120, 140, 160, 180, and 200, respectively.
Fig. 7(a) shows the edge chain detection results on our
benchmark with different values of gmin, we can see that
with the increment of gmin, the recall is decreasing while the
precision and the F -score are increasing. When gmin < 120,
the increment of precision is greater than the decrement of
recall, while when gmin > 120 they are generally in the same
magnitude, so the increment of F -score is close to 0. Thus
to detect the edge chains of an image, we recommend to set
gmin = 120 as a balance between the precision and recall.

As an object boundary detector, we consider to detect
as many boundary as possible. In this condition, the value
of gmin should be greater than that of edge chain detection
because the boundaries are usually with greater contrast. To
find out a general value of gmin for boundary detection, we
tested the proposed edge chain detector on the RUG dataset
with gmin= 100, 120, 140, 160, 180, 200, 220, 240, and 260,
respectively. Fig. 7(b) shows the edge chain detection results
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ground truth gmin = 100 gmin = 120 gmin = 140 gmin = 160

gmin = 180 gmin = 200 gmin = 220 gmin = 240 gmin = 260

Fig. 8. Comparison of the edge chain detection results with different gmin on the elephant 2 image in RUG dataset.

on the RUG with different values of gmin, we can observe
the same configurations as that on Fig. 7(a) that the F -score
is increasing with the increment of gmin with the cost of
the decrement of recall. A higher F -score may sacrifice the
completeness of detection result. Fig. 8 is a demonstration
of the edge chain detection results on the elephant 2 image
in the RUG dataset, we can see that when gmin = 260 some
ground truth edge chains were not detected out, but due to
the high value of precision, the F -score of this image is still
high. Thus to detect the boundaries of objects on an image,
we recommend to set gmin = 180 as a balance between the
precision and recall.

In conclusion, as we have stated in Section 3.2 that the
performance of the proposed algorithm can be adjusted by
setting a customized gmin, which has already been demon-
strated according to Figs. 7 and 8, and the bigger the value
of gmin is the more meaningful the final edge chains are.

5.1.3 Comparison of Level Lines, Edge Chain and RNFA

As we have mentioned in Section 2.2 that in the works of
[17] and EDPF [18], the level lines and the edge chains were
used to calculate the value of Nconf, respectively. In this sec-
tion, we will compare the performance of these two methods
with our proposed RNFA method on our built benchmark.
The level lines were created with the level quantization step
equal to 1, the edge chains were detected by the method
proposed in Section 3.2, and the value of gmin was set as 120.
Table 1 shows the average accuracies of these three methods
on all the 25 images in our benchmark. From Table 1, we
can see that the proposed RNFA method achieves the best
scores on precision and F -score, which are better than those
of both the level lines and the edge chain based method. In
fact the values of Nconf of the six images in Fig. 6 calculated
based on the level lines and edge chains are {1280942827,
982019578, 868959894, 1368890674, 951913875, 887204182}
and {1034672, 1731733, 1071010, 736707, 598523, 1582839},
respectively. In average, the values of Nconf calculated based
on level lines are around 1100 times bigger than those
calculated based on the edge chains, which is the reason
why the edge chain based method gains the higher recall
ratios but lower precisions than the other two methods. As

a conclusion, the proposed RNFA method can achieve better
accuracy than the level lines and edge chain based methods,
however we don’t have to obtain the level lines of an image
in advance.

5.1.4 Comparison with State-of-the-Art Methods
To sufficiently evaluate the performance of our proposed
RNFA based edge chain detection method, we compared it
with other four state-of-the-art edge detection methods, in-
cluding: EDPF [18], ED [16], SREdge [15] and CannyPF [22].
The source codes of ED and EDPF can be obtained from
the Edge Drawing library [30], the source code of our
previously proposed CannyPF is publicly available 4 and the
source code of SREdge was implemented by us according to
the original paper. All the algorithms were tested on the
proposed edge chain benchmark, the RUG dataset and the
BSDS dataset.

Table 2 shows the average accuracies of these algorithms
on the proposed benchmark and the RUG dataset. We can
see in this table that the proposed RNFA method achieves
the highest values on both precision and F -score, which
are much better than the EDPF on the second place. The
edge chain based method SREdge also performed very well,
better than both ED and CannyPF, considering the fact that
it applied the saliency instead of the Helmholtz principle to
validate the edge chains. We can also find out that the algo-
rithms EDPF and RNFA, that apply the Helmholtz principle
as a validation procedure, achieve higher precisions than
those of CannyPF, ED and SREdge that do not apply the
Helmholtz principle, which proves the effectiveness of the
Helmholtz principle. What should be noticed is that if we
keep gmin = 120 for both the proposed benchmark and the
RUG dataset, the recall, precision and F -score on the RUG
dataset is 0.68, 0.35 and 0.44, respectively, which is still much
better than that of EDPF and the resting methods. Fig. 9
shows the precision recall curve of the five tested algorithms
on the BSDS dataset, in which we set gmin = 180 for the
proposed RNFA method. We can see that the performances
of the RNFA and EDPF are close to each other with the same
F -score equals 0.57, which are better than that of the SREdge

4. Available at http://cvrs.whu.edu.cn/projects/cannyLines/
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(0.53), ED (0.52) and CannyPF (0.52). This performance
on the BSDS dataset is consistent with those of the RUG
dataset and our benchmark, which verifies the robustness
and effectiveness of the proposed RNFA method as an edge
chain and boundary detector.

Fig. 11 shows the edge detection results of these five
algorithms on six test images in our benchmark. We can ob-
serve from Fig. 11 that the proposed RNFA method achieves
the best performance, EDPF and RNFA generated less false
alarms than the other three methods, which is consistent
with the conclusion drawn above.

5.2 Evaluation on Line Segment Detector
5.2.1 Line Segment Benchmark
To evaluate the performance of the proposed line segment
detector, we built a benchmark with ground truth line seg-
ments labeled in the same way as the edge chain benchmark
in Section 5.1. The reason why we don’t use the YorkUr-
banDB dataset [31] is that the line segments were labeled for
vanishing points detection instead of line segment detection.
In our benchmark, the line segments were labeled by edge
pixels tracking and the least square fitting on the edge map
which was obtained in the same way as the edge chain
benchmark. There are 30 labeled images in our benchmark,
all of them were selected from the YorkUrbanDB dataset 5.
These images cover a range of indoor and outdoor scenes.
The first two rows on Fig. 12 show six representative images
and the corresponding labeled line segments of our line
segment benchmark.

5.2.2 Comparison of NFA and RNFA
As we have stated in Section 2.3 that both NFA and RNFA
can be used in the validation of line segments on the
gradient magnitude map. In this section we will show the
difference of these two methods. Fig. 10 shows the line
segment detection results of NFA, RNFA and NFA+RNFA
based methods on a low-contrast image and a high-contrast
one, respectively. We can observe from Fig. 10 that the NFA
based method tends to detect false alarms on the low-
contrast image, while the RNFA based method is apt to
detect false alarms on the high-contrast image. The average
recall ratio, precision and F -score in Table 3 show that the
RNFA based method tends to gain higher recall ratio but
lower precision than the NFA based method, but the average
F -scores of them on all 30 test images are very close. The
recall ratio and precision of the NFA+RNFA based method
are in-between these of the NFA and RNFA methods, but
the F -score of the NFA+RNFA based method is the highest
among these three methods. In general, the NFA and RNFA
based method may have different performance on a certain
image, but their average performance are close. Combining
both NFA and RNFA to double check the line segments is a
good balance between NFA and RNFA. The statistic result
in Table 3 is a good testament to this explanation.

5.2.3 Comparison with State-of-the-Art Methods
To sufficiently evaluate the performance of the proposed
NFA+RNFA line segment detector, we compared it with

5. Available at http://www.elderlab.yorku.ca/YorkUrbanDB/

other three state-of-the-art line segment detectors, including:
CannyLines [22], LSD [20] and EDLines [1]. Considering
that the edge chains can be directly applied on line segment
detection via the least square fitting, we also tested the
line segment detection result based on the edge chains
detected by the proposed RNFA based edge chain detector.
For each edge chain, we applied the least square method to
fit for a line segment from the very beginning of the edge
chain, if a line segment was well fitted, the following pixels
on the edge chain was added consecutively into this line
segment when the distance from this pixel to the current line
segment was smaller than 1.0 pixel, otherwise the current
line segment was preserved and a new line segment will
be fitted from the resting pixels. Then the same gradient
orientation line validation procedure as LSD and EDLines
is applied to get rid of false alarms. We denote this line
segment detector as RNFAEdge.

Fig. 12 shows the line segment detection results of
NFA+RNFA, RNFAEdge, CannyLines, LSD and EDLines
(from the third row to the last one) on six test images in
our benchmark. We can see that the NFA+RNFA method
performed best and generated the line segments with less
in amount but longer in average length than the other
detectors, which means the NFA+RNFA method can gen-
erate more complete line segments without loss in accuracy.
The RNFAEdge method detected more short line segments
than the NFA+RNFA method, and the reason is that the
RNFAEdge is based on the edge chains which may suffer
more from the noisy effect than the NFA+RNFA method
who detects line segments directly from the gradient mag-
nitude image. However, the differences between RNFAEdge
and NFA+RNFA are small, which can be seen in Table 3,
the F -score of NFA+RNFA and RNFAEdge are 0.851 and
0.843, respectively, which is much better than the other
three methods. The EDLines and LSD usually miss the
line segments that are week in contrast but long enough
to be recognized by vision, and also tend to detect a long
line segment into small fragments in the low contrast area
for the reason that the noise is relatively salient when the
contrast is low. The CannyLines performed better than both
the EDLines and LSD methods, but it can still not detect the
weak line segments very well.

Fig. 13 shows the line segment detection results of ED-
Lines, LSD, CannyLines, RNFAEdge and NFA+RNFA on
four test images with 0%, 5%, 10% and 15% Gaussian white
noise added, respectively. We can see that the NFA+RNFA
method performed best in different noise conditions with
little false alarms, the RNFAEdge method also performed
well with most of the line segments which were detected
out unbroken, the CannyLines method detected false alarms
with the increment of noise, the LSD method suffered most
from the influence of noise with most of its detected line
segments in the 15% noisy image were broken into frag-
ments, the EDLines method gained as little false alarms as
the NFA+RNFA method in all the noisy conditions, but the
amounts of line segments are much less than those of the
NFA+RNFA method, besides there are false detections in
the third test image of the EDLines. As a conclusion, the
proposed NFA+RNFA line segment detection method can
detect more line segments with less false alarms in different
noisy images.



SUBMITTED TO IEEE TRANSACTIONS ON IMAGE PROCESSING, MAY 2016 10

Image (857 x 750) NFA: (192,62.6) RNFA: (107,95.3) NFA+RNFA: (107,95.3)

Image (288 x 269) NFA: (149,34.3) RNFA: (210,30.8) NFA+RNFA: (149,34.3)

Fig. 10. The line segment detection results of the NFA, RNFA and NFA+RNFA based methods on a low-contrast image in the first row and a
high-contrast one in the second row, respectively. (·, ·) denotes the line number and average line length of an image.

TABLE 3
Comparison of EDLines, LSD, CannyLines, NFA, RNFA and NFA+RNFA.

EDLines [1] LSD [20] CannyLines [22] NFA RNFA NFA+RNFA RNFAEdge
Measurements R P F R P F R P F R P F R P F R P F R P F

Average 0.638 0.724 0.675 0.729 0.796 0.757 0.792 0.819 0.802 0.882 0.825 0.848 0.858 0.846 0.849 0.862 0.841 0.851 0.827 0.865 0.843

6 CONCLUSION

In this paper we developed the Helmholtz principle on
the gradient magnitude map of an image in the view of
probability theory, and proposed a new conception named
“relative number of false alarms” (RNFA) as a supplement
of the “number of false alarms” (NFA) when the value of
Nconf is difficult to be estimated. An edge chain detector
which applies the RNFA to validate the meaningfulness of
the detected edge chains was proposed, along with a line
segment detector which detects line segments directly from
the gradient magnitude map instead of edge chains like the
EDLines and CannyLines. An edge chain benchmark and a
line segment one were built to evaluate the proposed edge
chain and line segment detectors in quantity, respectively.
The experimental results on our built benchmarks and some
widely used datasets sufficiently demonstrate that the pro-
posed edge chain and line segment detectors outperform the
state-of-the-art methods.
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