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ABSTRACT
In this paper, we present a novel method for seamlessly mosaick-
ing panoramic images based on superpixels in the graph cuts energy
minimization framework. To effectively ensure that all seamlines are
detected in the laterally continuous regions with the high image sim-
ilarity and the low object dislocation, the energy functions adopted
in graph cuts combine the pixel-level similarities of image charac-
teristics, including color and gradient, and the texture complexity.
Instead of finding the optimal solution of seamlines in overlap re-
gions via graph cuts among the entire set of pixels, we find it among
superpixels created from input images, which greatly improves the
efficiency of the global graph cuts energy optimization because the
number of elements in graph cuts dramatically decreases. Experi-
mental results demonstrate that the superpixel-based method is capa-
ble of generating high-quality seamlines as the pixel-based method
but greatly reduces the computation time.

Index Terms— Seamline Detection, Panoramic Images, Image
Mosaicking, Superpixels, Graph Cuts

1. INTRODUCTION

Nowadays, as the development of Street View which provides
panoramic views along streets in the world, the demand for high-
quality panoramic images gradually becomes larger. Image mo-
saicking is the key technology to produce high-quality panoramic
images, which is also an important and classical problem in the field
of computer vision, which is used to blend a set of aligned images
into a single image (mosaic image) as seamlessly as possible. Gener-
ally, the methods of image mosaicking can be divided into two main
categories, smoothing transition and optimal seamline detection.

Smoothing transition methods try to make given seams invisible
and remove stitching artifacts by smoothing color differences be-
tween input source images. Alpha blending [1,2] is a simple and fast
smoothing transition method, and has been widely used in panoram-
ic images mosaicking. It blended input images based on the weight-
ing map where the weighting coefficient of each pixel varies as a
function of the distance from the seam. But it can’t completely re-
move stitching artifacts and avoid ghosting problems caused by ob-
ject moving and small geometric misalignments in mosaic images.
The gradient domain based method [3] has been proposed for image
blending. It defined the cost functions in the gradient domain rather
than in the intensity domain to evaluate the visibility of the seam,
which can reduce color differences and smooth color transitions. It
can produce high-quality mosaic images in many cases.

However, due to the impreciseness of camera calibration and the
deviation of multi-camera projection centers, the geometric positions
of corresponding pixels from different images may be different and
the pixels of closer objects shift more than those of distant ones,

especially for panoramic images of Street View simultaneously cap-
tured by multiple cameras whose projection centers are not the same.
In addition, due to the inconsistence of the moment of exposure be-
tween multi-cameras, there are larger geometric inconsistencies in
moving objects. Transition smoothing methods can deal with the
color difference along the seam but can’t handle the great geometric
position difference. One kind of methods to solve this problem is to
detect the optimal seamlines avoiding crossing majority of visually
obvious foreground objects and most of overlap regions with the low
image similarity. If the seams and stitching artifacts are still visible
due to color differences, the smoothing transition technique can be
further applied to solve it easily. In this paper, our work only fo-
cused on the optimal seamline detection, which is the first key step
in producing high-quality panoramic images.

Optimal seamline detection methods search for the seamlines
between input source images where intensity or gradient differences
in the overlap regions are minimal. Many methods regarded the
seamline detection as an energy optimization problem and solved
it by minimizing the special energy function which is defined to rep-
resent the difference along the seamlines [4–7]. Kerschner [5] pro-
posed an automated seamline detection method using twin snake.
But this algorithm requires a high computation time and can’t com-
pletely overcome the local minimum problem. Graph cuts [8] is the
most popular energy optimization algorithm which is applied to de-
tect seamlines. Kwatra et al. [6] first applied the graph cuts algorithm
to detect the optimal seamlines for image and video synthesis. Af-
ter that, Agarwala et al. [7] provided a framework to easily create a
single composite picture by using graph cuts to choose good seam-
lines within the constituent images, which needed an intuitive user
interaction for defining local and global objectives. Gracias et al. [4]
combined the watershed segmentation and the graph cuts algorithm
to detect the optimal seamlines. Their algorithm began with creating
a set of watershed segments on the difference image of overlap re-
gions followed by finding the solution via graph cuts between those
segments instead of the entire set of pixels. However, it only consid-
ered the intensity difference when computing the cost of each pixel
and the difference image has lost some necessary information for
image segmentation.

To greatly reduce the computation cost, we formulated the opti-
mal seamline detection as a graph cuts energy minimization problem
in the superpixel domain instead of in the pixel domain in this pa-
per. The superpixels were generated from the input source images
instead of the difference images, which ensures the accuracy of im-
age segmentation. Not only the color and gradient differences were
considered into the cost of each pixel but also the texture complexity
inspired by HOG (Histogram of Oriented Gradient) [9] was inte-
grated. Based on those, the optimal seamlines are located along the
boundaries of superpixels via graph cuts.



2. OUR METHOD

Before giving a detailed description of our method, we briefly review
the superpixel algorithms and the graph cuts algorithm we used. Su-
perpixels are an oversegmentation of an image and popularly used
in many computer vision applications. We choose SLIC [10] and V-
Cells [11] algorithms to compare the influence of different superpix-
el algorithms in the last seamline detection results. SLIC and VCells
regard the superpixel segmentation as a pixel clustering problem. S-
LIC clusters pixels in the 5-D space defined by the L, a and b values
of the CIELAB color space as well as the x and y coordinates of the
pixels. VCells firstly divides an image into small patches with uni-
form size and shape, and then applies EWCVT-LNN [11] to cluster
pixels.

Graph cuts [8] is an efficient energy optimization algorithm to
solve labeling problems, and has been popularly applied in many
fields of computer vision, such as image segmentation [12,13], stere-
o matching [14], and image blending [4,6,7]. The basic technique is
to first construct a weighted graph where each edge weight cost rep-
resents the value of corresponding energy function, and then to find
the minimum cut in this graph based on the max-flow or min-cut al-
gorithm [15]. Let P be a set of elements, N be a set of all element
pairs {p, q} in the neighborhood, and L be a set of labels. The goal
is to find a labeling f that assigns a label fp ∈ L to each element
p ∈ P by minimizing the energy function:

E(f) =
∑

p∈P
Dp(fp) +

∑
(p,q)∈N

Vp,q(fp, fq), (1)

where Dp(fp) denotes the cost of assigning the label fp to the el-
ement p and Vp,q(fp, fq) defines the cost of assigning the label fp
and fq to the adjacent elements p and q, which are often called as
the data energy term and the smooth energy term, respectively. If fp
and fq is equal, the value of Vp,q(fp, fq) would be 0.

2.1. Superpixel Segmentation

In our study, we assume that all input source images for mosaick-
ing Street View panoramic images have been geometrically aligned
into the same coordinate system as precise as possible. However,
there exist always geometric misalignments between these images
in different extents due to that they are captured from the scenes
with large depth differences by different cameras without the precise
same camera projection center. For two input images I = (I1, I2),
we generate superpixles in the overlap region of I1 or I2, and project
them onto another image, as shown in Fig. 1. These superpixels are
represented as S = {Si}ni=1 where n is the number of superpixels.
In this paper, all free parameters were left at their default values for
SLIC and VCells superpixel algorithms.

2.2. Energy Definition

The energy cost C(p) of the pixel p = (x, y) of I is comprised of
three terms: the color difference term Cc(p), the gradient magnitude
term Cg(p) and the texture complexity term Ct(p), which is defined
as:

C(p) = (Cc(p) + Cg(p))× Ct(p). (2)

The color difference for the pixel p between two images is com-
puted in the HSV (Hue, Saturation, Value) color space rather than in
RGB, which is defined as:

Cc(p) = wh|H1(p)−H2(p)|+ ws|S1(p)− S2(p)|, (3)

(a) SLIC (b) VCells
Fig. 1. The superpixels produced by SLIC and VCells in the
left image and projected onto the right image. The image size is
1352×4069 and the number of superpixels is 3000.

where H1(p) and S1(p) denote the values of H and S channels of
p in I1 and there are the same meanings for H2(p) and S2(p). The
weight coefficients wh and ws are used to balance the influence of
the differences at the H and S channels, which were set as wh = 1
and ws = 0.1 in this paper, respectively.

The gradient magnitudes of each pixel in the horizontal and ver-
tical directions are obtained using the Sobel operator in the grayscale
space. The gradient magnitude cost term Cg(p) of the pixel p is de-
fined as:

Cg(p) =|Gx
1(p)−Gx

2(p)|+ |Gy
1(p)−Gy

2(p)|+
λ(|Gx

1(p)|+ |Gx
2(p)|+ |Gy

1(p)|+ |Gy
2(p)|),

(4)

where λ is the balanced coefficient which was set as 0.25 in this
paper, Gx

1(p) and Gy
1(p) denote the horizontal and vertical gradient

magnitudes of p in I1, and there are the same meanings for Gx
2(p)

and Gy
2(p).

Sometimes, some specific regions such as roads, sky and wood-
land are more suitable to be located in the seamlines due to that
the image difference in these regions is not easy to be observed al-
though there exist large color differences and large gradient magni-
tudes in such these regions. To solve this problem, we proposed a
new criterion to distinguish those regions, which is inspired by HOG
(Histogram of Oriented Gradient) feature descriptors [9]. The tex-
ture complexity Γ(p) of the pixel p in overlap regions is calculated
as follows. The gradient orientation O(p) is computed firstly as:
O(p) = arctan (Gy(p)/Gx(p)) where Gy(p) and Gx(p) denote
the gradient magnitude values of p in the vertical and horizontal
directions, respectively. All the gradient orientations are converted
into the range of [0, 2π]. Then, we compute the histogram of ori-
ented gradient H(Nk×k(p)) comprised of h (h = 12 was used in
this paper) bins over the k × k (k = 11 was used in this paper) size
window region Nk×k(p) centered at the pixel p. Based on the his-
togram of oriented gradient, the texture complexity at the pixel p is
defined as:

Γ(p) = 1−
∑h

i=1 min(Hi(Nk×k(p)), H̄(Nk×k(p)))∑h
i=1 Hi(Nk×k(p))

, (5)

where Hi(Nk×k(p)) denotes the frequency of the i-th bin in



Fig. 2. The four typical regions (Top) happened in Street View
panoramic images and their corresponding normalized texture com-
plexity maps (Bottom) where the lighter regions indicate higher tex-
ture complexity.
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Fig. 3. An illustration example of the optimal seamline detection
method via graph cuts. The thickness of lines between adjacent su-
perpixels represents the value of the energy cost and the “cut” de-
notes the minimum cut, which means the optimal seamline.

H(Nk×k(p)) and H̄(Nk×k(p)) represents the mean of frequencies
of all bins, which is defined as H̄(Nk×k(p))=

1
h

∑h
i=1Hi(Nk×k(p)).

Obviously, if the pixel p is located in the local region with poor
texture like sky or strongly repetitive patterns like road or woodland,
the frequencies of different bins in the histogram is approximately
equal, so Γ(p) is small and close to 0. In contrast, Γ(p) is big and
close to 1 if the frequencies of few bins are high and the rest are low.

Based on the definition of the proposed texture complexity, the
texture complexity term Ct(p) for the pixel p is defined as:

Ct(p) = Γ1(p) + Γ2(p), (6)

where Γ1(p) and Γ2(p) represent the texture complexity of p in I1
and I2. In this way, we can apply Ct(p, I) to constrain the color
difference and gradient magnitude in the regions with poor texture
or strongly repetitive patterns without affecting other richly-textured
regions. Fig. 2 shows the normalized texture complexity maps of
several typical regions happened in Street View panoramic images.

2.3. Labeling via Graph Cuts

We formulate the optimal seamline detection as an energy minimiza-
tion problem and use graph cuts to find the solution between super-
pixels, as shown in Fig. 3. The energy cost E(I) comprises of the
data energy term Edata(I) and the smooth energy term Esmooth(I),
where the data energy term represents all energy costs for individual
superpixels with one of input source images and the smooth energy
term represents all energy costs between adjacent superpixels, which
is defined as:

E(I) = Edata(I) + Esmooth(I), (7)

where the data energy term Edata(I) is defined as:

Edata(I) =
∑

Si∈S
(RSi(I1) +RSi(I2)) , (8)

where RSi(I1) and RSi(I2) represent the costs of assigning the la-
bel of the superpixel Si to I1 and I2, which are defined as RSi(Ik) =
0 if Si ∈ Ik otherwise RSi(Ik) = ∞ if Si /∈ Ik, k = 1, 2. Accord-
ing to the above definition, for each superpixel Si, its data energy
only depends on whether it is inside the valid region of one image.

The smooth energy term Esmooth(I) is defined as:

Esmooth(I) =
∑

(Si,Sj)∈N (S)
σi,j ·Esmooth(Si, Sj), (9)

where N (S) represents the set of all neighour superpixel pairs in S
and the coefficient σi,j = 0 if the labels of the superpixels Si and
Sj are the same otherwise σi,j = 1. Esmooth(Si, Sj) represents the
smooth energy between two neighbor superpixels Si and Sj , which
is defined as:

Esmooth(Si, Sj) = maxb∈B(Si,Sj) β(b) · C(b), (10)

where B(Si, Sj) represents the set of all pixels in the common
boundary of the superpixels Si and Sj , and C(b) is the energy
cost of the pixel b defined in Eq. (2). β(b) is used to reduce the
influence of the noise pixels, which is defined as β(b) = 0 if C(b)
is one of the biggest k costs along the common boundary otherwise
β(b) = 1, where k = min(α × |B(Si, Sj)|, 3), where |B(Si, Sj)|
denotes the size of the set B(Si, Sj) and α = 0.05 was used in this
paper.

3. EXPERIMENTAL RESULTS

The images of outdoor scenes captured by an integrated multi-
camera equipment with 6 Nikon D7100 cameras of 24 million
pixels installed on a mobile vehicle platform to illustrate the per-
formance of our method for mosaicking panoramic images. To
mosaic a panoramic image, we first warped 6 original images into
the same coordinate system with the image size of 12000×6000
by the reliable alignment. In total, 6 individual seamlines were
detected from 6 camera views, consisting of 5 seamlines from 5
adjacent horizontal camera view pairs and 1 seamline between
the top camera view and the horizontal camera ones. Our algo-
rithm was implemented with C++ under Windows and tested in a
computer with an Intel Core i7-4770 at 3.4GHz. All the images
used in this paper and more experimental results are available at
http://cvrs.whu.edu.cn/projects/SSD/.

To illustrate that our energy criteria defined in Section 2.2 is ef-
fective, we compared the seamline detection results by our energy
criteria with the intensity difference used in [4], as shown in Fig. 4.
From the seamline detection results especially in the detailed local
regions, we found that our energy criteria obviously outperforms on-
ly intensity difference considered. The seamlines detected based on
our energy criteria can avoid crossing cars, buildings and markings
in the road. However, it failed for only using intensity difference.

Fig. 5 presents the seamline detection results of the pixel-based,
superpixel-based and squared-grid-based methods. The SLIC super-
pixel algorithm was utilized to generate superpixels. Squared grids
are an extreme case of superpixels. By comparing them, we found
that seamlines detected by these methods always locate in the re-
gions with high image similarity due to the constraint of our ener-
gy criteria, but there are great differences in details. We observed
that seamlines detected by the superpixel-based method are similar
with the pixel-based method without noticeable degradation of the
seamline quality, and obviously outperform the squared-grid-based
method because the squared grids don’t have the information of seg-
mentation. The total execution times of those methods including the



Fig. 4. The seamline detection results with the intensity difference used in [4] (Left) and our proposed energy criteria (Right). The SLIC
superpixel algorithm was utilized to generate superpixels, and the number of superpixels is 3000 in each overlap region.

Fig. 5. Visual comparison of the pixel-based (Left), the superpixel-based (Middle) and the squared-grid-based (Right) methods. The number
of superpixels used is 3000 in each overlap region.
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Fig. 6. The computation times of different methods with different
numbers of superpixels or squared grids.

segmentation time for superpixels are plotted in Fig. 6. Obviously,
our proposed superpixel-based method took much less computation
time than the pixel-based method, which can greatly improve the
efficiency.

From Fig. 1, we observed that superpixels produced by SLIC
are more regular than VCells, but the boundaries of superpixels pro-
duced by VCells are more close to ground truth boundaries than S-
LIC. Fig. 7 shows the visual comparison of the seamline detected
based on different superpixel algorithms, including squared-grid (an
extreme case), SLIC and VCells, from which we observed that the
detected seamline is more reasonable if the boundaries of superpix-
els are more close to ground truth.

Fig. 7. Visual comparison of our proposed seamline detection
method with different superpixel algorithms applied: Square-grid,
SLIC, VCells and Pixel-based from left to right. The number of su-
perpixels is 3000.

4. CONCLUSION
This paper presented a novel superpixel-based optimal seamline de-
tection algorithm for image mosaicking via graph cuts. Instead of
using the simple intensity difference computing the cost of the cor-
responding pixels, we proposed a new energy criteria combining the
texture complexity, the color difference and the gradient magnitude.
Another contribution in this paper is that superpixels adopted great-
ly reduces the computation time of finding the solution compared
with finding it over all pixels in the overlap regions. Experimental
results on panoramic images have proved that the efficiency has sig-
nificantly improved without noticeable degradation of the quality of
seamlines.
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